Abstract:
A cryptographic key is provided for cryptographically processing information. A first key is generated according to a key generator scheme. A key space of the first key is reduced in accordance with a key space reduction scheme. The reduced key space is distributed over a larger key space in accordance with a one-way key space distribution function to provide the cryptographic key. The cryptographic key has an associated first work factor for a person without knowledge of the key space distribution function, and an associated second work factor which is less than the first work factor for a person with knowledge of the key space distribution function. Information is cryptographically processed using the cryptographic key, and a new key is generated at a rate of R keys per second to provide a desired protection factor P=W/RZ for a cryptographic system having a lifetime Z.
Abstract:
A method and apparatus are provided for generating a digital signature that authenticates information of a plurality of different information groups. Information from each group is hashed to produce a separate hash key for each group authenticating the information in that group. Particular combinations of the hash keys are hashed together to produce at least one combined hash key. Each of the hash keys is ultimately combined in a predetermined order with all other hash keys via the combined hash keys to produce the digital signature in a manner that authenticates the information of all of the information groups. The digital signature is reproducible without access to all of the information groups authenticated thereby. Instead, information from a first information group is provided together with a set of hash keys and combined hash keys embodying authenticated information from the other groups. The hash key for the first information group is produced locally and combined with the other hash keys and/or combined hash keys in order to reproduce the digital signature.
Abstract:
Apparatus is provided for securing the integrity of a functioning system. The apparatus comprises a primary device for performing a function having a first vulnerability and a secondary device having a second vulnerability which is identical to the first vulnerability of the primary device. The secondary device is adapted to secure the function performed by the primary device in response to activity breaching the second vulnerability.
Abstract:
A process may be utilized by a device to implement public key asymmetric encryption. The process encrypts a data set with a symmetric encryption key to form an encrypted data set. Further, the process encrypts the symmetric encryption key with a public key component of an asymmetric encryption key to form an asymmetric encrypted cookie. Finally, the process stores the encrypted data set and the asymmetric encrypted cookie in a non-secure area of a storage medium.
Abstract:
The present invention discloses an apparatus and method for defining and enforcing rules of transition between two security domains, e.g., a transport domain and a persistent security domain. In turn, a border guard, e.g., a security device, is provided between these two domains that enforce rules for transition between the two security domains. This novel approach of defining a transport domain and a persistent security domain simplifies the classification of the digital content and its movement through the system. Namely, the border guard once established between the two systems can enforce DRM rules associated with how contents are moved between the two domains.
Abstract:
A system and method for digital data distribution is disclosed. The system and method provides a set of one or more source streams encoded by an encoder to form a common data stream for distribution to a plurality of destination systems, each authorized to access at least a portion of the common data stream. Encryption comprises obtaining the source stream, identifying some blocks of the source stream as secure blocks, identifying some other blocks of the source stream as unsecured blocks, encrypting the secure blocks for each of a plurality of destination system classes wherein each of the plurality of destination systems is a member of one or more destination system classes, and each of the blocks of an encrypted secure block set is decryptable by destination systems in the class associated with that encrypted secure block set.
Abstract:
A system and method for securely distributing PKI data, such as one or more private keys or other confidential digital information, from a PKI data generation facility to a product in a product personalization facility that is not connected to the PKI data generation facility and is assumed to be a non-secure product personalization facility. The system includes a PKI data loader for securely transmitting the encrypted PKI data transferred from the PKI data generator to a PKI server at the product personalization facility. The PKI server then transfers the PKI data to the product of interest, typically via a PKI station acting as a proxy between the PKI server and the product. In each communication step, PKI data being transferred is encrypted multiple times and the system is designed such that if any intermediate node is compromised with all of its keys, the overall system has not yet been compromised.
Abstract:
According to one embodiment of the invention a system is utilized to leverage the security arrangement between a first and second device to establish a secure link between the first device and a third device. One embodiment of the invention is particularly suitable for loading security data on a set top box, such as that utilized in the cable television industry.
Abstract:
The present invention discloses an apparatus and method for providing a secure move of a content decryption key within or between domains. Namely, the present invention addresses the single copy usage rule by restricting the movement of the decryption key instead of restricting the movement of the encrypted content itself.
Abstract:
According to the invention, a method for securing a plaintext object within a content receiver is disclosed. In one step, a secure portion of a secure object and a plaintext remainder of the secure object are received. Which portion of the secure object is the secure portion is determined. The secure portion is decrypted to provide a plaintext portion. The plaintext object that comprises the plaintext portion and the plaintext remainder is formed. The plaintext object is stored. including authentication and authorization.