Abstract:
A wrought material containing a Cu—Al—Mn-based alloy, in which an existence frequency of a coincidence grain boundary with a Σ value of 3 or less is 35% or more but 75% or less, and which has a recrystallized microstructure substantially formed from a β single phase; and the use thereof.
Abstract:
A Ni—Ti-based alloy material includes a matrix phase consisting essentially of a Ni—Ti-based alloy and having a B2 type crystal structure. A nonmetallic inclusion is present in the matrix phase, in which 99% by mass or more of the nonmetallic inclusion is a TiC-based inclusion having a NaCl type crystal structure, the TiC-based inclusion has a lattice misfit (δ) in a range of 0.4238 or more and 0.4259 or less. The lattice misfit (δ) is represented by Expression δ=(a1−a2)/a2, where a1 is a lattice constant (Å) of the TiC-based inclusion and a2 is a lattice constant (Å) of the matrix phase.
Abstract:
A Cu—Al—Mn-based alloy material (1) having a composition comprising: given contents of Al and Mn, and a given total content of at least one selected from Ni and the like; with the balance being Cu and unavoidable impurities, wherein the alloy material has a shape elongated in the working direction (RD), wherein a grain length ax in the RD is R/2 or less to the width or diameter (R), a grain length bx in a direction perpendicular to the RD is R/4 or less, and the amount of grains X (2) is 15% or less, and wherein a grain length a in the RD and a grain length b in the direction perpendicular to the RD satisfy: a≥b, and an angle formed by the normal line of the (111) plane and the RD is 15° or larger, the amount of grains Y′ (3) is 85% or more.
Abstract:
A Ti—Ni-based alloy, which has a torsion angle for Interface I that is a junction plane between habit plane variants of a martensitic phase, of less than 1.00°; a wire, an electrically conductive actuator, and a temperature sensor, each of which uses that alloy; and a method of producing the Ti—Ni-based alloy.
Abstract:
A wrought material containing a Cu—Al—Mn-based alloy, in which an existence frequency of a coincidence grain boundary with a Σ value of 3 or less is 35% or more but 75% or less, and which has a recrystallized microstructure substantially formed from a β single phase; and the use thereof.
Abstract:
The longitudinal direction (rolling direction) and the width direction of a cold processed plate material are indicated. The layout direction of an ingrown nail correction tool material is arranged such that the longitudinal direction of a material of a correction tool body substantially corresponds to the width direction, and the direction in which a material of a nail holder portion is formed substantially corresponds to a direction in which the cold processed plate material is processed. The material of the ingrown nail correction tool is cut out from the cold processed plate material and processed such that the longitudinal direction of the correction tool body of an ingrown nail correction tool is substantially perpendicular to the direction in which the cold processed plate material is processed. The direction in which the nail holder portion is formed substantially corresponds to the direction in which the cold processed plate material is processed.
Abstract:
A Ti—Ni-based alloy, which has a torsion angle for Interface I that is a junction plane between habit plane variants of a martensitic phase, of less than 1.00°; a wire, an electrically conductive actuator, and a temperature sensor, each of which uses that alloy; and a method of producing the Ti—Ni-based alloy.
Abstract:
A Fe-based shape memory alloy material, containing 25 atom % to 42 atom % of Mn, 9 atom % to 13 atom % of Al, 5 atom % to 12 atom % of Ni, and 5.1 atom % to 15 atom % of Cr, with the balance being Fe and unavoidable impurities; a method of producing the same; and a wire material and sheet material composed of the alloy material.
Abstract:
A hallux valgus correction device (1) for correcting hallux valgus, the hallux valgus correction device including: a corrector (10) made of a superelastic alloy; and a fixture (2, 3, and 4) formed from a fabric to attach the corrector, in which the corrector has a hinge part (11) that is rotationally movable in the bending direction and the stretching direction of one toe or a plurality of toes in need of correction.