Abstract:
Alighting device includes: a light emitting device including a plurality of light emitting elements arranged in curve having a first curvature; and a honeycomb member having an extendable and contractible honeycomb structure, arranged in curve having a second curvature larger than the first curvature, in an emission direction of light emitted from the light emitting device.
Abstract:
An image projection device includes: a drive controller that causes generation of light of a specified color tone by a combination of light to be transmitted by a liquid crystal panel to project image data onto a projection plane; an image capturing controller that receives a synchronization signal that specifies a period in which the liquid crystal panel does not transmit light from the drive controller and causes capturing of an image of the projection plane according to the period that is specified by the synchronization signal; an illuminated image detector that detects, from the captured image of the image data, an illuminated image that is illuminated by an illuminating device on the projection plane; and an illuminated image generator that generates projection image data obtained by combining given image data in a position in which the illuminated image is detected.
Abstract:
A disclosed image scanning device illuminates a document with a light source, focuses light reflected from the document on an image sensor to obtain one-dimensional images of the document, and obtains a two-dimensional image of the document from the one-dimensional images. The device includes an illumination lens for dividing a light beam emitted from the light source into multiple light beams and a combining unit for combining the multiple light beams on the document. A disclosed image scanning method includes the steps of illuminating a document with a light source; focusing light reflected from the document on an image sensor to obtain one-dimensional images of the document; and obtaining a two-dimensional image of the document from the one-dimensional images. In this method, a light beam from the light source is divided into multiple light beams and the multiple light beams are combined on the document. A disclosed image forming apparatus includes the image scanning device.
Abstract:
An image reader apparatus for lighting a manuscript surface of a manuscript in a line state, and for image-forming a reflection light from a reading part of the manuscript surface lighted in the line state, to an image sensor, by an image forming lens which forms a part of a scaled down optical system so that an image of the manuscript is read, includes an irradiation opening part and an optical element. The irradiation opening part is for irradiating a lighting light to an outside part, which is formed at the light source. The optical element for attenuating a light amount so as to be permeated, which is provided between the irradiation opening part and the manuscript stand.
Abstract:
An inspection system for inspecting a target includes a first lighting device configured to irradiate light onto the target from a given direction; a second lighting device, provided between the target and the first lighting device, configured to irradiate light onto the target from an oblique direction with respect to the given direction; an image capture device, provided at a position opposite to a position of the target with respect to the first lighting device and the second lighting device in the given direction; and circuitry configured to acquire a first inspection target image of the target, captured by the image capture device by irradiating the light from the first lighting device, and a second inspection target image of the target, captured by the image capture device by irradiating the light from the second lighting device, to be used for inspecting the target.
Abstract:
The present invention is concerning an image projection apparatus comprising: a projecting unit that projects and displays on a projection surface each image in a time sharing manner for each of a plurality of color components, for an input image signal; a shooting unit that shoots a projected image on the projection surface; a shoot control unit that makes the shooting unit perform the shooting, when a detection mode of a irradiation point at which light is irradiated from an irradiation device on the projection surface is set, in timing shifted by a certain amount of time from a synchronized state to time sharing timing of each color component in the projecting unit; and an irradiation-point-position detecting unit that detects, from a projected image projected by the projecting unit, a position of the irradiation point on the image.
Abstract:
An image inspecting apparatus includes a first light illuminating unit irradiating a measured object on which an image is formed with light from an inclined direction; a second light illuminating unit irradiating the measured object with light from a different direction; an imaging unit receiving reflected light of the light with which the measured object is irradiated by the first light illuminating unit and the second light illuminating unit; a first and a second reference plate having a mirror surface and a diffuse surface, respectively; and an image inspecting unit inspecting a gloss distribution of the image based on the amount of light received by the imaging unit and a correcting coefficient.
Abstract:
An image inspection device includes a first illuminating unit illuminating an object from an oblique direction with a first illuminating light; an imaging unit receiving specular reflection light of the first illuminating light from the object; and a focusing unit focusing the specular reflection light on the imaging unit. The image inspection device is configured to inspect the image based on the intensity of the specular reflection light received by the imaging unit. The first illuminating unit includes light-emitting elements and an illumination light producing unit that is configured to deflect light emitted from the light-emitting elements and thereby to produce the first illuminating light such that the specular reflection light from the object enters a pupil of the focusing unit.
Abstract:
A disclosed image scanning device illuminates a document with a light source, focuses light reflected from the document on an image sensor to obtain one-dimensional images of the document, and obtains a two-dimensional image of the document from the one-dimensional images. The device includes an illumination lens for dividing a light beam emitted from the light source into multiple light beams and a combining unit for combining the multiple light beams on the document. A disclosed image scanning method includes the steps of illuminating a document with a light source; focusing light reflected from the document on an image sensor to obtain one-dimensional images of the document; and obtaining a two-dimensional image of the document from the one-dimensional images. In this method, a light beam from the light source is divided into multiple light beams and the multiple light beams are combined on the document. A disclosed image forming apparatus includes the image scanning device.
Abstract:
An image reader apparatus for lighting a manuscript surface of a manuscript in a line state, and for image-forming a reflection light from a reading part of the manuscript surface lighted in the line state, to an image sensor, by an image forming lens which forms a part of a scaled down optical system so that an image of the manuscript is read, includes an irradiation opening part and an optical element. The irradiation opening part is for irradiating a lighting light to an outside part, which is formed at the light source. The optical element for attenuating a light amount so as to be permeated, which is provided between the irradiation opening part and the manuscript stand.