Abstract:
Disclosed is an optical line terminal device which includes a media access control (MAC) block configured to convert Ethernet packets and port identifiers into a downstream frame or an upstream frame into the Ethernet packets and the port identifiers; and a central processing unit (CPU) configured to control the MAC block, wherein the MAC block includes a traffic monitoring part which is configured to receive the port identifiers and to provide identifier information of an optical network device according to the port identifiers; and wherein the CPU is configured to generate a control frame for controlling a power supplied to the optical network device, according to identifier information of the optical network device.
Abstract:
A method of transmitting an Operations, Administration and Maintenance (OAM) message and of processing an error in a Passive Optical Network (PON) system is provided. Using an OAM packet format that may be used in common in the PON system, a process of transmitting or receiving an OAM message may be simplified, an efficiency of the process may be increased, and an Optical Network Unit (ONU) may be managed at a high speed.
Abstract:
Provided is an automatic optical power control method for an optical line terminal (OLT) of a passive optical network (PON). The automatic optical power control method includes at the OLT, measuring an allowable range of the optical power allowing a normal network operation on the PON, at the OLT, setting an optimum optical signal level within the measured allowable range of the optical power, and at the OLT, adjusting a power level of a transmitter to the set optimum optical signal level. Accordingly, an appropriate power level can be selected depending on an optical distribution network (ODN) structure to drive the transmitter. Also, when the entire optical network units are deactivated, a laser of the transmitter is turned off to thereby minimize unnecessary power consumption at the OLT.
Abstract:
An apparatus and method for managing a dynamic bandwidth allocation to support a low-power mode, in a passive optical network (PON) are provided. The apparatus may include a power saving mode managing unit to manage a power saving mode of at least one optical network unit (ONU), a bandwidth allocation parameter storage unit to store a bandwidth allocation parameter used for a power saving mode, and to maintain the stored bandwidth allocation parameter, and a dynamic bandwidth allocating unit to provide bandwidth allocation information to the at least one ONU, when the stored bandwidth allocation parameter is received.
Abstract:
According to a method of reducing power in an optical access network, upon the application of power, an optical network terminal (ONT) operates normally in an activation mode. The ONT then determines whether the requirements for switching from activation mode to power-saving mode are satisfied. If the requirements are satisfied, the ONT transmits a sleep signal to an optical line terminal (OLT), which is a message notifying that the ONT will soon switch to power-saving mode. Thereafter, the ONT switches to power-saving mode and cuts off power for all functions except for power for monitoring and controlling external inputs. The ONT then determines whether the requirements for switching from power-saving mode to activation mode are satisfied. If the requirements are satisfied, the ONT transmits a wake-up signal to the OLT and switches to the activation mode for normal operation.
Abstract:
An optical subscriber network for power reduction is provided. The optical subscriber network may include an Optical Line Terminal (OLT) and an Optical Network Terminal (ONT). The OLT may manage a plurality of ONTs by classifying the plurality of ONTs into a sleep group, and may multicast a sleep allowance message only to ONTs included in a predetermined sleep group.
Abstract:
Provided are an apparatus and method for efficiently and dynamically allocating a bandwidth on a Time Division Multiple Access-based Passive Optical Network (TDMA PON). The dynamic bandwidth allocation apparatus for uplink data transmission of a plurality of Optical Network Units (ONUs) including a plurality of class queues corresponding to Transmission Container (T-CONT) types, the plurality of ONUs connected to an Optical Line Terminal (OLT) on a Passive Optical Network (PON), includes: a class queue information storage unit storing information regarding a bandwidth allocation period and an allocatable bandwidth amount for each T-CONT type; an allocation check table unit checking the bandwidth allocation period for the T-CONT type received from the class queue information storage unit, and determining an allocatable bandwidth amount for the T-CONT type; and a bandwidth allocation unit allocating an uplink bandwidth to the T-CONT type with reference to the bandwidth allocation period and the allocatable bandwidth amount for the T-CONT type, and re-allocating to each ONU an uplink bandwidth remaining after allocating a total uplink bandwidths to all T-CONT types.
Abstract:
A Passive Optical Network (PON)-based system and method for providing handover between Optical Network Terminals (ONTs) are provided. The PON-based system may include an Optical Line Terminal (OLT), and an ONT to relay communication between the OLT and a mobile terminal. When the mobile terminal is connected to the ONT, the ONT may transmit a WiFi location update alarm message to the OLT, and the OLT may update a Look-Up Table (LUT) in response to the WiFi location update alarm message.
Abstract:
Disclosed is a method of registering only an authorized optical network terminal among a plurality of optical network terminals with the same serial number, in an optical line terminal, using a public key encryption algorithm, in a Gigabit Passive Optical Network (GPON). According to an exemplary aspect, a GPON system encrypts a physical layer OAM message transmitted/received for serial number registration of an optical network terminal, using a key distributed according to a public key encryption algorithm, and authenticates registration of the optical network terminal using the encrypted physical layer OAM message. Accordingly, it is possible to securely authenticate registration of an authorized optical network terminal and block registration of unauthorized optical network terminals.
Abstract:
A method and apparatus of detecting a rogue optical network unit (ONU) is provided. An optical line terminal (OLT) detects an abnormal upstream transmission to determine a plurality of rogue ONU candidates, and transmits a sleep allow message instructing a transition to a sleep mode to each of the plurality of rogue ONU candidates. The OLT detects the rogue ONU among the plurality of rogue ONU candidates based on upstream transmissions from the plurality of rogue ONU candidates in the sleep mode. Since the detection of the rogue ONU is performed in the sleep mode, the remaining ONUs can transition from the sleep mode to the normal mode after the detection of the rogue ONU is completed, thereby making it possible to rapidly resume upstream communication.