Abstract:
A transimpedance amplifier for a burst mode optical communication converts a burst current signal into differential output voltage signals. Using a multi-level digital AGC mechanism, the transimpedance amplifier is rapidly adapted to a burst signal whose amplitude varies in a wide range. By using an adaptive level detection method, a multi-level digital AGC can be implemented without using ADC. In addition, because the transimpedance amplifier uses a selective reset generation scheme that performs a reset operation for itself after a high power burst, a burst mode operation can be performed without external reset signals. Accordingly, the transimpedance amplifier can be integrated with an optical detector within a TO-can. Furthermore, the transimpedance amplifier can have the burst mode capability and the best sensitivity.
Abstract:
A tunneling-based mobility support method and apparatus is provided which supports a mobility of a mobile node in a heterogeneous network regardless of IP versions (IPv4/IPv6). The mobility support apparatus includes a load balancer, a plurality of mobility support servers, and a plurality of end routers each being TCP connected to each of the mobility support servers. When receiving a tunnel establishment request message from the mobile node, the load balancer selects one mobility supports server from a plurality of mobility support servers to control a mobility service for the mobile node. The selected mobility support server selects a plurality of tunnel end addresses of one end router from the plurality of end routers to establish an IP tunnel with the mobile node according to a predetermined criterion, forwards the tunnel establishment request message to the end router, and sends the mobile node a tunnel establishment response message including the tunnel end address of the selected end router.
Abstract:
Provided is a time division multiple access over wavelength division multiplexed passive optical network (TDM-over-WDM-PON) system. According to the TDM-over-WDM-PON system, a downstream optical signal is separated according to a wavelength in a remote node, transmitted to an optical amplifying device located in subscriber equipment, amplified in the optical amplifying device, transmitted back to the remote node, and then transmitted to the subscriber equipment. Also, an upstream optical signal is transmitted to a wavelength converting device located in the subscriber equipment from the remote node, wavelength-converted in the wavelength converting device, returned back to the remote node, and then transmitted to a central office.
Abstract:
The present invention proposes a wavelength division multiplexing-passive optical network (WDM-PON) system which transmits downstream data to an optical network unit (ONU) as an optical line termination (OLT) receives seed light from a spectrum-sliced external light source module. One characteristic of the proposed WDM-PON system is that optical transmitters of the OLT and ONU are operated regardless of optical wavelength. Another characteristic of the proposed WDM-PON system is that a conventional TDMA-PON (E-PON or G-PON) ONU can be accommodated without a change.
Abstract:
Provided is a time division multiple access over wavelength division multiplexed passive optical network (TDM-over-WDM-PON) system. According to the TDM-over-WDM-PON system, a downstream optical signal is separated according to a wavelength in a remote node, transmitted to an optical amplifying device located in subscriber equipment, amplified in the optical amplifying device, transmitted back to the remote node, and then transmitted to the subscriber equipment. Also, an upstream optical signal is transmitted to a wavelength converting device located in the subscriber equipment from the remote node, wavelength-converted in the wavelength converting device, returned back to the remote node, and then transmitted to a central office.
Abstract:
A method and apparatus for receiving burst data in an OLT of an EPON are provided. The method includes the steps of: a) receiving burst data from the plurality of ONUs; b) generating a multipoint control protocol (MPCP) LOS signal for reducing a synch time of the burst data; c) reducing the synch time in response to generation of the MPCP LOS signal; and d) recovering the received burst data by performing a code-group sort in a period where the MPCP LOS signal is not generated.
Abstract:
Provided are a network resource control method and apparatus for guaranteeing an admission rate of a high-priority service. In the method and apparatus, the admission rate of the high-priority service is increased by differentiating between the high-priority service and a low-priority service by either rejecting the low-priority service or reducing a bandwidth allocated to the low-priority service when the low-priority service has already been accepted.
Abstract:
An apparatus for providing duplicated shelf managers in an ATCA system is provided. The apparatus for providing duplicated shelf managers includes a hub/switch in a control backplane to allow a manager to access the duplicated shelf managers all the time from an external network while maintaining the switch configuration defined of the ATCA specification. The hub/switch connects Ethernet ports of the duplicated two shelf managers and Ethernet ports of the two switches at the same time, and connects the two shelf managers and the two switches to the Internet.
Abstract:
The invention relates to an EPON bridge apparatus and a forwarding method thereof. In a case of receiving a frame from the network port or the PON port, the apparatus associates the port having the received frame inputted with a source MAC address of the received frame to learn the information in an FDB table, which manages port information for the learned MAC address. Then the apparatus refers to the FDB table to remove an LLID from upstream frame, and then forwards the upstream frame to the network port, while attaching an LLID corresponding to a destination MAC address to the downstream frame to transmit to the PON port. Bridging between ONUs is possible with flooding capability using an anti-LLID. VLAN-LLID translation mode is provided with support for VLAN tag addition/removal at the ONU side. A multicast pruning function is provided for the downstream.
Abstract:
A broadcast service provider must transmit broadcast programs by dynamically reflecting real-time reconfiguration of broadcast timetables and broadcast programs of a plurality of broadcast program providers and the broadcast service provider.A broadcast program providing apparatus and method for supporting dynamic delivery of program timetables and broadcast programs are provided. The apparatus includes a broadcast time organizer generating a third broadcast timetable by organizing broadcast times using a first broadcast timetable obtained by organizing broadcast times of first broadcast programs provided by a plurality of broadcast program providers or both the first broadcast timetable and a second broadcast timetable obtained by organizing broadcast times of second self-produced broadcast programs, and a broadcast program controller transmitting an exact broadcast program at an exact broadcast time according to the third broadcast timetable using the first broadcast programs received from the plurality of broadcast program providers or both the first broadcast programs and the second self-produced broadcast programs, which correspond to the third broadcast timetable. Thus, a broadcast service provider can transmit broadcast programs by dynamically reflecting real-time reconfiguration of broadcast timetables and broadcast programs of a plurality of broadcast program providers and the broadcast service provider.