Abstract:
A method of manufacturing an electromagnetic clutch coil assembly provided in a compressor of an air conditioner for an automobile is achieved by forming a coil winding by winding a coil coated with an adhesive, heating the coil winding in a state of being pressed in a direction in which the coil winding is stacked, hardening the coil winding by cooling the coil winding in the state of being pressed in a direction in which the coil winding is stacked, and assembling the coil winding, a bobbin, and a cover in a field core assembly, wherein the adhesive between two neighboring coil layers in a direction in which the coil winding is stacked moves to a nearby empty space. Thus, during the operation of the compressor, the lead wires connected to both ends of the coil winding can be prevented from being damaged or short-circuited due to the vibrations and high temperature.
Abstract:
Disclosed is a thrust bearing structure for supporting a driving shaft for use in a variable displacement swash plate type compressor. The inventive thrust bearing structure supports a driving shaft of the compressor, and has a specific correlation between the inner and the outer diameters of a stationary race and a driving race, between the races and a cylinder bore and a outer diameter of the driving shaft. That is, a distance (Lr1) between an inner diameter (d3) of the stationary race 82 and an outer diameter (d2) of the driving shaft 20 is greater than a distance (Lr2) between an outer diameter (D3) of the stationary race 82 and a surface 4a of the center bore 4 (Lr1>Lr2).
Abstract:
Disclosed herein is an apparatus and a method for speech recognition. The apparatus includes a controller that is configured to receive a speech signal including a speech recognition waveform from a user and the waveform of speech generated within a vehicle, when a speech recognition operation initiates. The controller is further configured to generate an offset waveform corresponding to a speech output waveform generated from a speech output device within the vehicle, using feature information of the speech output waveform, when the speech recognition operation initiates. Additionally, the controller is configured to extract the speech recognition waveform of the user by removing a predetermined amount or more of the speech output waveform from a speech signal input by overlapping the offset waveform to the speech signal and to perform speech recognition based on the speech recognition waveform.
Abstract:
In a receiver-drier including a cylindrical body and a lower cap sealing a lower end portion of the body, the body includes a filter support portion sectioning the body into upper and lower portions and having at least one inwardly protruding portion supporting an upper end portion of the filter accommodated in the lower portion of the body, at least one refrigerant inlet formed in the upper portion of the body, a coupling portion formed by inwardly pressing the body between the filter support portion and the lower end portion of the body so that an inner surface of the pressed body is coupled to the lower cap, and at least one refrigerant outlet disposed between the filter support portion and the coupling portion.
Abstract:
A heat exchanger uses a refrigerant acting under a high pressure, such as carbon dioxide, as a refrigerant. The heat exchanger includes first and second header pipes arranged a predetermined distance from each other and parallel to each other, each having at least two chambers independently sectioned by a partition wall, a plurality of tubes for separately connecting the chambers of the first and second header pipes, facing each other, wherein the tubes are divided into at least two tube groups, each having a single refrigerant path, a refrigerant inlet pipe formed at the chamber disposed at one end portion of the first header pipe, through which the refrigerant is supplied, a plurality of return holes formed in the partition wall to connect two chambers adjacent to each other, through which the refrigerant sequentially flows the tube groups, and a refrigerant outlet pipe formed at the chamber of one of the first and second header pipes connected to a final tube group of the tube groups along the-flow of the refrigerant, through which the refrigerant is exhausted.
Abstract:
A swash plate type compressor having variable capacity includes a housing unit having a cylinder block where a plurality of bores are formed and forming a crank chamber, a suction chamber, and a discharge chamber, a drive shaft rotatably installed by the housing unit, a piston installed at each of the bores of the cylinder to be capable of sliding, a rotor disposed at the crank chamber and installed at the drive shaft, and rotating together with the drive shaft, a swash plate coupled to the rotor by a hinge unit for reciprocating the piston and having a hub coupled to the drive shaft, and a pivot unit for limiting pivot of the swash plate as a slot formed in the drive shaft in the axial direction and the hub of the swash plate are directly pin-coupled. In the compressor, first and second flat portions are formed at both sides of the drive shaft in a direction perpendicular to the slot of the drive shaft, and third and fourth flat portions are formed at an inner surface of the hub corresponding to the first and second flat portions.
Abstract:
The present invention relates to a disc and hub assembly for an electromagnetic clutch of a compressor. The assembly comprises: a disc (120) adapted to be attracted to or separated from a friction surface of a pulley under the action of an electromagnetic coil; a hub (110) coupled to a driving shaft of the compressor, the hub penetrating the disc (120) and having a flange (112) formed on its outer peripheral surface; a plate spring (130) which includes a plate portion (131) coupled to the top surface of the disc (120), a number of leaf spring portions (135) obliquely extending inwardly from the plate portion (131) to be coupled to the flange (112) of the hub (110) and having ends (137) which are bent toward the disc (120), and dampers (160) coupled to the ends of the leaf spring portions (135); and shock-absorbing means (140) interposed between the disc (120) and the plate portion (131) to reduce noise and impact during on/off of the clutch.
Abstract:
This present invention relates to an axial-flow fan including a central hub connected with a driving shaft of a motor, and a plurality of blades extending radially along the circumference of the hub for blowing air toward an axial direction, the plurality of blades integrated with the hub into a single body, wherein assuming that a camber ratio at a blade root(cr1) of each blade is the value obtained by dividing a maximum camber value at the blade root into a chord length, a camber ratio at a blade tip(cr2) of each blade is the value obtained by dividing a maximum camber value at the blade tip into the chord length, and a percentage of decrease of the camber ratio is the value obtained by dividing a difference value between the camber ratio at the blade root(cr1) and the camber ratio at the blade tip(cr2) into the camber ratio at the blade root(cr1), the percentage of decrease of the camber ratio is in a range between 33% and 85%.
Abstract:
The present invention relates to a hood latch assembling device for assembling a hood latch to a position of a carrier which is the same as a hood latch part of the vehicle. The hood latch assembling device includes: a carrier assembling stand for fixing the carrier; and a hood latch guide jig for exactly positioning the hood latch assembly at a predetermined position of the carrier. The hood latch assembling device can reduce a time period required for an assembling process of the vehicle and lower an defective proportion as a position error rate of the hood latch is reduced by assembling the hood latch to an exact position of a carrier when a front end module is constructed.
Abstract:
Method and device for forming a pulley are disclosed. The method of the present invention includes the first step to fix the plate working piece formed with the hole in the intermediate thereof to the first forming device; the second step to form the inner hub by rotating the plate working piece and pressing the upper surface of the plate works in drawing process; the third step to obtain the first semi-manufactured pulley by pressing the upper surface of the plate working piece and by forming the outer hub in drawing process. Further, the method can include the fourth step to fix the first semi-manufactured pulley to the second forming device; the fifth step to gather the first convex bead portion by pressing the edge of the first semi-manufactured pulley; the sixth step to form the second convex bead portion by pressing the first convex bead portion; the seventh step to fix the first semi-manufactured pulley to the third forming device; the eighth step to form the flat bead portion by pressing the convex bead portion, and the ninth, step to obtain the second semi-manufactured pulley having the V-profile forming portion 70 formed with the recess 80 on the outer periphery surface by pressing the flat bead portion.