Abstract:
Fruit or other objects placed on the conveyor and spun by the conveyor are properly oriented on the conveyor by the method and apparatus of the invention by ejecting one or more adjacent touching objects or ejecting objects which form stacked triplets. An optical sensor determines when there is or is not a gap between objects and relates that gap detection to the position of the objects on the conveyor. Detection of a continuous signal through a controller circuit causes a downstream solenoid to be energized according to predetermined timing. The solenoid in turn, when energized, rotates a finger which is coupled to, carried with the conveyor system and situated underneath the pocket between adjacent spools. The finger rotates upwardly and ejects the objects sitting in the pocket, thereby removing the misplaced or touching objects on the conveyor belt.
Abstract:
Described is an apparatus and method, particularly applicable to a brush bed conveyor system, by which objects, typically citrus fruit, are washed or sprayed. A moveable high pressure spray manifold is contained within a manifold carriage and is disposed within the conveyor chassis such that it is moved along above a brush bed by a conveyor chain. Separation bars extend from the conveyor chain to segregate the objects into queues retained within the spray pattern of the manifold. When the manifold reaches a predetermined end position, a release latch is decoupled from the separation bars to disconnect the separation bars and conveyor chain from the manifold carriage. The predetermined end position is sensed and the manifold carriage is quickly returned to its initial position by means of a selectively activated pneumatic piston assembly.
Abstract:
Described is a method, particularly applicable to a brush bed conveyor system, by which objects, typically citrus fruit, are washed or sprayed. A moveable high pressure spray manifold is contained within a manifold carriage and is disposed within the conveyor chassis such that it is moved along above a brush bed by a conveyor chain. Separation bars extend from the conveyor chain to segregate the objects into queues retained within the spray pattern of the manifold. When the manifold reaches a predetermined end position, a release latch is decoupled from the separation bars to disconnect the separation bars and conveyor chain from the manifold carriage. The predetermined end position is sensed and the manifold carriage is quickly returned to its initial position by means of a selectively activated pneumatic piston assembly.
Abstract:
The present invention relates to a melon cutting apparatus that cuts a melon portion or melon half. The apparatus cuts the melon pulp into sections, and removes the rind from the pulp. The apparatus includes a base having an opening; a cutting matrix that has a plurality of blades, wherein the cutting matrix communicates with the opening. The apparatus also includes a sweeping blade that is curved and positioned at or near the cutting matrix and is used to cut the rind from the melon pulp. The apparatus further includes an actuator that engages the sweeping blade. The apparatus embodies an arm attached to the apparatus, and a pressure cap that is mounted to the arm, opposite the cutting matrix. Additionally, the present invention pertains to systems and methods of using the apparatus.
Abstract:
A method and apparatus of sorting plant products based on damage to the plant products is disclosed. A beam emitter emits an illumination light toward the outer surface of a plant product. A beam detector detects substantially a single wavelength of a reflected light produced by the plant product responsive to the illumination light. A control unit determines at least one of a presence, an amount, and a severity of damage responsive to the reflected light. The control unit assigns a damage category to the plant product responsive to the determination of damage.
Abstract:
The computer process controls operation of a system which sorts objects by surface characteristics. The system includes a multi-rail conveyor, an imaging unit for each rail of the conveyor and a computer including a user interface. Each imaging unit includes at least one camera, and at least one block of LEDs of multiple predetermined colors. The process initializes system hardware and software, calibrates the imaging units, sets, tests and reports various parameters for imaging, automatically or under user control, and synchronizes the operation of the imaging units with conveyor action to produce optimal imaging, as well as controlling sorting based upon imaging output.
Abstract:
Application of wax to fruit in a conveyor system is controlled to optimize the protective and cosmetic effects of the wax application and to efficiently utilize the wax notwithstanding variations in size, texture, nature or number of the fruit, the type(s) of wax or the processing environment by providing an intelligent wax controller. The wax controller has a camera which detects fruit passing through a field of view defined by an optical housing in which the camera is fixed. Two-dimensional pixel maps of the fruit passing through the viewing area are assembled and an image is processed to provide distinct pixel images even when the fruit are touching. The diameter of the fruit for each of the separated images is then determined from which the total surface area of the fruit passing under the viewing area is computed. Based on this computation a plurality of variable stroke pumps and wax nozzles are each individually controlled at appropriate positions across the conveyor system to apply the appropriate amount of wax to the fruit then passing under the wax applicator nozzles.
Abstract:
Fruit or other objects placed on the conveyor and spun by the conveyor are properly oriented on the conveyor by the method and apparatus of the invention by ejecting one or more adjacent touching objects or ejecting objects which form stacked triplets. An optical sensor determines wherein there is or is not a gap between objects and relates that gap detection to the position of the objects on the conveyor. Detection of a continuous signal through a controller circuit causes a downstream solenoid to be energized according to predetermined timing. The solenoid in turn, when energized, rotates a finger which is coupled to, carried with the conveyor system and situated underneath the pocket between adjacent spools. The finger rotates upwardly and ejects the objects sitting in the pocket, thereby removing the misplaced or touching objects on the conveyor belt.
Abstract:
Fruit or other objects placed on the conveyor and spun by the conveyor are properly oriented on the conveyor by the method and apparatus of the invention by ejecting one or more adjacent touching objects or ejecting objects which form stacked triplets. An optical sensor determines when there is or is not a gap between objects and relates that gap detection to the position of the objects on the conveyor. Detection of a continuous signal through a controller circuit causes a downstream solenoid to be energized according to predetermined timing. The solenoid in turn, when energized, rotates a finger which is coupled to, carried with the conveyor system and situated underneath the pocket between adjacent spools. The finger rotates upwardly and ejects the objects sitting in the pocket, thereby removing the misplaced or touching objects on the conveyor belt.
Abstract:
The conveyor system is made of a plurality of spools connected by chains at each end of the spool. The space between an adjacent pair of spools defines a pocket. An ejector is carried by the chain within each pocket to eject fruit from the pocket. The ejectors are selectively activated by solenoids lying underneath the chain and mounted on a conveyor channel across which the chain and spools are pulled. An over-the-end detector detects whether fruit passes over the end of the detector and has not been otherwise ejected from the conveyor system. Depending upon the periodicity and the timing in which fruit passes over the end of the conveyor, it can be determined whether one or more ejectors are damaged, or whether ejectors or solenoids are inoperable, and in each case which one.