Abstract:
A responsive tag and a method, apparatus and system for identifying a type of recyclable material. The tag includes an element attached to the recyclable material. The element responds to a selected interrogation signal of a recycling machine to provide a predetermined detectable signal associated with the type of recyclable material. The detectable signal is detected by a component in the recycling machine which then accepts the material for recycling.
Abstract:
A deactivatable EAS tag in which a circuit comprising a non-linear element causes the generation of a detectable signal in response to an interrogating signal and in which a first magnetic element is arranged to be brought from a first position where the magnetic element does not short the non-linear element to a second position where the magnetic element shorts the non-linear element.
Abstract:
In a fire alert system energy is harvested from a wire line pair (408) used to provide primary electrical power from a fire panel central monitoring station to a plurality of remote devices (406). The fire panel central monitoring station begins communications with a remote device by modulating the voltage on the wire line pair so as to communicate a first message (502) to one of the plurality of remote devices. Thereafter, one of the remote devices will respond to the first message with a second message (504) by modulating the voltage on the line pair. Energy is selectively harvested from the wire line pair at one or more of the remote devices in accordance with the remote device address specified in the first message.
Abstract:
Systems and methods for managing inventory. The methods comprise: generating sensor data by an Electronic Smart Tag (“EST”); processing, by the EST or a computing device remote from the EST, the sensor data to transform the same into information specifying at least one of a first person's intention with regard to an item to which the EST is coupled and the first person's interest in the item; generating a notification or a recommendation relating to inventory management, based on at least one of the first person's intention with regard to the item and the first person's interest in the item; and providing the notification or recommendation to a second person.
Abstract:
Systems and methods for managing a tag. The methods comprise: placing the tag in a first operational mode in which an internal component (“IC”) necessary to facilitate communication between the tag and a tag reader (“TR”) are intentionally disabled; storing in the tag's data store a schedule specifying a scheduled time during which the tag is permitted to communicate with TR; selectively enabling IC at the scheduled time to permit the tag to communicate with TR; performing monitoring operations at the tag to determine when a predetermined condition has been detected; and causing the tag to autonomously perform an alerting function when the predetermined condition has been detected. The alerting function comprises (a) enabling a receiver of the tag to communicate with TR at an unscheduled time, and/or (b) activating an alert by enabling a hardware alerting component provided on the tag.
Abstract:
Systems and methods for making a marker. The methods comprise: disposing a resonator with a flat planar cross-sectional profile in a cavity formed in a first substrate partially defining a marker housing; sealing the cavity using a second substrate; placing a first bias element adjacent to the second substrate so that the resonator will be biased by the first bias element when the marker is in use to oscillate at a frequency of a received transmit burst; and using a physical structure in the cavity or a magnetic field passing through the cavity to reduce frictional forces between the resonator and at least the second substrate.
Abstract:
Systems and methods for deactivating an Electronic Article Surveillance (“EAS”) security tag coupled to an item. The methods comprise: detecting a presence of the EAS security tag in proximity to a tag deactivator; determining a distance between the item and at least one deactivation coil of the tag deactivator, in response to a detection of the EAS security tag; dynamically adjusting a deactivation field strength setting of the tag deactivator based on the distance that was previously determined; and using the at least one deactivation coil to generate a deactivation field in accordance with the deactivation field strength setting which was previously dynamically adjusted.
Abstract:
Systems and methods for controlling at least one security device based on the behavior of at least one tag. The methods comprise: generating sensor data relating to movement by at least one sensor disposed in a first tag; analyzing the sensor data to determine if an item to which the first tag is coupled is being handled in an unusual, abnormal or nervous manner; determining if an enterprise system has lost communicative contact with the first tag coupled to the item that is being handled in an unusual, abnormal or nervous manner; and causing an operational state of the security device to change in response to the loss of the communicative contact between the enterprise system and the first tag.
Abstract:
Systems and methods for controlling at least one security device based on the behavior of at least one tag. The methods comprise: generating sensor data relating to movement by at least one sensor disposed in a first tag; analyzing the sensor data to determine if an item to which the first tag is coupled is being handled in an unusual, abnormal or nervous manner; determining if an enterprise system has lost communicative contact with the first tag coupled to the item that is being handled in an unusual, abnormal or nervous manner; and causing an operational state of the security device to change in response to the loss of the communicative contact between the enterprise system and the first tag.
Abstract:
Optical data transceiver is used to illuminate a secured space with an optical data signal which has been modulated to contain a first data sequence. One or more retroreflected optical data signals are received at the optical data transceiver from reflector elements disposed in the secured space. The retroreflected optical data signals are authenticated and a security event notification is selectively communicated to an enterprise security management controller if a variation occurs in regard to at least one retroreflected optical beam condition. The variation can involve a disruption of the optical beam and/or a displacement of the optical beam.