Abstract:
A heterocyclic compound represented by Formula 1 below and an organic light-emitting device including the heterocyclic compound: wherein R1 and R2, and A and A′ are defined as in the specification.
Abstract:
A heterocyclic compound represented by Formula 1 below and an organic light-emitting device including the heterocyclic compound: wherein R1 to R12 are defined as in the specification.
Abstract:
A method of cleaning a mask includes preparing a mask on which a first metal layer and a second metal layer are stacked sequentially, and lifting off the second metal layer by removing the first metal layer.
Abstract:
Provided is an organic light emitting device including an anode, a cathode, and a light emitting layer disposed between the anode and the cathode, wherein the cathode has a structure including a first metal layer and a second metal layer, or a structure including a first metal layer, a second metal layer, and one selected from the group consisting of an oxide layer, a nitride layer, and a nitric oxide layer, and wherein the cathode has low resistance.
Abstract:
An organic light emitting display device that can prevent distortion of an image transmitted therethrough by preventing light scattering. The organic light emitting display device includes a substrate in which a plurality of transmitting regions and a plurality of pixel regions are defined. The plurality of pixel regions are spaced apart from each other by the transmitting regions. A passivation layer is formed in all the plurality of transmitting regions and the plurality of pixel regions. A first aperture is formed in a location on the passivation layer, which corresponds to an at least part of the plurality of transmitting regions; a plurality of pixel electrodes that are formed on the passivation layer and are disposed to overlap and cover the thin film transistors. An opposite electrode formed to face the plurality of pixel electrodes and to allow light to pass therethrough. An organic emission layer is interposed between the plurality of pixel electrodes and the opposite electrode to emit light.
Abstract:
A photoluminescence diode which may decrease a driving voltage may include an anode, a cathode, an emission layer interposed between the anode and the cathode, and an electron accepting layer interposed between the emission layer and the cathode and including one material selected from fullerene, methanofullerene, doped fullerene, doped methanofullerene, a derivative thereof, and a mixture thereof.
Abstract:
An organic light emitting display device includes a substrate; a first electrode layer formed on the substrate; an emission structure layer formed on the first electrode layer; an electron injection layer (EIL) formed immediately on the emission structure layer and comprising a composite layer of LiF:Yb; and a second electrode layer formed on the EIL.
Abstract:
A pull-up driving part maintains a signal of a first node at a high level by receiving a turn-on voltage in response to one of a previous stage or a vertical start signal. A pull-up part outputs a clock signal through an output terminal in response to the signal of the first node. A first holding part maintains a signal of a second node at a high level or a low level when the signal of the first node is respectively low or high. A second holding part maintains the signal of the first node and a signal of the output terminal at a ground voltage in response to the signal of the second node or a delayed and inverted clock signal.
Abstract:
An organic light emitting display device has high transmittancy to external light. The organic light emitting display device includes a substrate; a first wiring formed on the substrate in a first direction; second and third wirings formed on the substrate in a second direction; a first thin film transistor connected to the first and second wirings; a second thin film transistor connected to the first thin film transistor and the third wiring; and an organic light emitting display panel (OLED) connected to the second thin film transistor, wherein the second and third wirings are formed of graphene.