Abstract:
Disclosed is a vacuum wall-through structure to be installed in a hole formed in a wall of a vacuum chamber. The vacuum wall-through structure includes a cable holder that holds a cable at the center thereof and a cable holder cover installed outside the cable holder.
Abstract:
Provided is a miniature pin extracting device for extracting a miniature pin inserted into a part. The miniature pin extracting device includes a coupling having a polygonal pillar shape, the coupling having a lower end coupled to the locating pin, a retainer mounted outside the coupling, and a screw part supported by the retainer, the screw part being coupled to an upper end of the coupling. Thus, a rotation force of the screw part may be converted into a vertical axial motion through the retainer to safely extract the locating pin without lateral force and rotation, thereby minimizing damage of the part.
Abstract:
An analysis system for an aviation radiation dose includes: a proton spectrum generator which generates a galactic cosmic ray incident on the Earth's atmosphere and a proton spectrum corresponding to a solar proton event; a global radiation dose map producer which generates-particle transport and produces a radiation dose map; a global radiation dose map converter which converts the radiation dose map based on a standard atmosphere into a radiation dose map corresponding to current atmosphere conditions in real time; and a database in which data necessary for operations of the proton spectrum generator, the global radiation dose map producer and the global radiation dose map converter is previously calculated and stored, thereby having an effect on estimating any radiation route dose if information about an arbitrary path and time is given.
Abstract:
An analysis system for an aviation radiation dose according to the present invention includes: a proton spectrum generator which calculates a galactic cosmic ray incident on the Earth's atmosphere and a proton spectrum corresponding to a solar proton event; a global radiation dose map producer which calculates particle transport based on the proton spectrum and produces a radiation dose map; a global radiation dose map converter which converts the radiation dose map produced based on a standard atmosphere into a radiation dose map corresponding to current atmosphere conditions in real time; and a database in which data necessary for operations of the proton spectrum generator, the global radiation dose map producer and the global radiation dose map converter is previously calculated and stored, thereby having an effect on estimating a radiation dose of another route if another piece of information about an arbitrary path and time is given besides a previous given path.
Abstract:
A space weather monitoring system for polar routes includes: a satellite which flies over polar routes; a route-information providing server which receives data collected by the satellite monitoring the polar routes and generates various pieces of information about space weather; a flight vehicle which makes a request for information about the polar routes of the flight to the route-information providing server, and flies over the polar routes based on the received information; and a network which relays data among the satellite, the route-information providing server and the flight vehicle, so that an aurora-distribution map needed for an aircraft flight, an electromagnetic wave absorption map based on the ionosphere, information about space weather, and the situation and forecast of the space weather can be provided to an airline, thereby having effects on allowing the airline to check the information about the space weather in real time and fully considering a user who is unfamiliar to the space weather.
Abstract:
An optoelectric control apparatus for a satellite laser ranging system comprises a communication controller for externally receiving optoelectric control data. Memory is connected to the communication controller and stores a round trip distance to a satellite. A laser generation control unit is connected to the communication controller and outputs a laser fire signal. A signal measurement unit receives a laser start time. A real-time conversion unit is connected to the signal measurement unit and the communication controller, and converts a predicted laser arrival time into real time. A Lagrange interpolation processor is connected to the real-time conversion unit and the memory, and calculates a time at which laser light fired by a laser transmission unit returns back to a laser reception unit (laser arrival time). The clock unit is connected to a time measurement unit, the real-time conversion unit, a register unit, and a delay unit, and outputs time information.
Abstract:
An optoelectric control apparatus for a satellite laser ranging system comprises a communication controller for externally receiving optoelectric control data. Memory is connected to the communication controller and stores a round trip distance to a satellite. A laser generation control unit is connected to the communication controller and outputs a laser fire signal. A signal measurement unit receives a laser start time. A real-time conversion unit is connected to the signal measurement unit and the communication controller, and converts a predicted laser arrival time into real time. A Lagrange interpolation processor is connected to the real-time conversion unit and the memory, and calculates a time at which laser light fired by a laser transmission unit returns back to a laser reception unit (laser arrival time). The clock unit is connected to a time measurement unit, the real-time conversion unit, a register unit, and a delay unit, and outputs time information.