Abstract:
The present invention relates to an apparatus with reconfiguration function and signal gathering function. The apparatus with reconfiguration function and signal gathering function according to the present invention comprises a signal gathering unit which gathers at least one alarm digital alarm signal, an alarm signal address setting unit where the address of the alarm signal gathering unit is setup; and an alarm signal collection controller which outputs the at least one digital alarm signal through serial bus. Therefore, address is allocated to a plurality of digital signals and thus the number of necessary components decreases and the embodiment area decreases, as well.
Abstract:
Disclosed are a radio secure reader and a radio secure tag for supporting a secure mode and a normal mode. The radio secure reader for controlling an operation mode of the radio secure tag may include a reader modem to receive the operation mode from the radio secure tag, and a reader processing unit to identify the received operation mode as a normal mode or a secure mode, and to control the radio secure tag based on the identified operation mode.
Abstract:
Provided are extendable loop-back passive optical network (PON) and scheduling method and apparatus for the same. The loop-back type PON includes an OLT (optical line terminal) including a wavelength-tunable optical transmitter and a wavelength-locked optical receiver, and an RN (remote node) including an optical coupler/splitter, the optical coupler/splitter receiving optical signals from the wavelength-tunable optical transmitter and splitting the optical signals by wavelength so as to transmit the optical signals to corresponding ONTs (optical network terminals). Each of the ONTs transmits upstream data to the OLT using the same wavelength as the wavelength of the optical signal received from the OLT through the RN. Since the optical network makes use of the TDM and WDM communication schemes, the optical network can be maintained and upgraded at lower cost.
Abstract:
A semiconductor device having a unit capable of temporarily storing electrical signals, may include an electrical signal generation unit, a first signal transmission unit electrically connected to the electrical signal generation unit, a first signal storage unit electrically connected to the first signal transmission unit, a second signal transmission unit electrically connected to the first signal storage unit, a second signal storage unit electrically connected to the second signal transmission unit, a reset unit electrically connected to the second signal storage unit, an amplification unit electrically connected to the second signal storage unit, a selection unit electrically connected to the amplification unit, and an output unit electrically connected to the selection unit, for stable signal processing.
Abstract:
Provided is a digital broadcast system that receives digital broadcast services on a passive optical network (PON). The data separator separates a signal input thereinto from the outside into an Ethernet frame for data service and an Ethernet frame for digital broadcast service. The Ethernet switch transmits the Ethernet frame for data service to an optical network terminal (ONT) provided in the user's home according to header information of the Ethernet frame for data service. The channel request processor receives the user's channel selection request information and user identification (ID) information from the ONT. The digital broadcast processor transmits the Ethernet frame for digital broadcast service, corresponding to the digital broadcast channel selected by the user, to the user's ONT, by using a part of bandwidth assigned for an existing line.
Abstract:
An image sensor can include a plurality of photoelectric conversion elements arranged in a matrix. A plurality of floating diffusion regions can be shared by respective corresponding pairs of adjacent photoelectric conversion elements. A plurality of charge-transmission transistors can respectively correspond to the photoelectric conversion elements, where each of the charge-transmission transistors are connected between a corresponding one of the plurality of photoelectric conversion elements and a corresponding one of the plurality of floating diffusion regions. A plurality of charge-transmission lines can be commonly connected to gates of respective corresponding pairs of adjacent rows of charge-transmission transistors, where each of the respective corresponding pairs of adjacent rows of charge-transmission transistors can be connected to respective ones of the plurality of photoelectric conversion elements in different adjacent rows of floating diffusion regions.
Abstract:
A method of storing sensor data in a sensor tag is provided. The method comprises receiving new sensor data output from a sensor, comparing the received new sensor data with immediately previous sensor data to determine whether the comparison result satisfies a predetermined criterion, and storing the new sensor data in a tag memory when it is determined that the criterion is satisfied. Accordingly, efficient use of the tag memory is possible.
Abstract:
Provided is a method and apparatus for managing a product distribution. The product distribution management method may include: reading a security key of a product from a security tag attached to the product; transferring the read security key to a security server; receiving, from the security server, first authentication information that is encrypted using the security key; receiving, from the security tag, second authentication information that is encrypted using the security key; and determining whether the security tag is duplicated, based on the first authentication information and the second authentication information.
Abstract:
Real-time location tracking apparatus and method using a global positioning system (GPS) signal relay tag is provided. Here, a tag may receive a GPS signal and transmit the received GPS signal to a reader, and the reader may calculate a location of the tag, and thereby a real-time location tracking service may be provided.
Abstract:
In one aspect, an image sensor is provided which includes an array of unit active pixels. Each of the unit active pixels comprises a first active area including a plurality of photoelectric conversion regions, and a second active area separated from the first active area. The first active areas are arranged in rows and columns so as to define row and column extending spacings there between, and the second active areas are located at respective intersections of the row and column extending spacings defined between the first active areas.