摘要:
A link setup method for a wavelength-division-multiplexing passive optical network (WDM PON) system. The system includes a service providing device, a local node, and a plurality of subscriber devices. The link setup method includes assigning an initial wavelength for communication between the service providing device and a new subscriber device to be installed in the local node. The assigning of the initial wavelength may be performed as a part of process for activating the subscriber device, and this procedure may be performed between a physical layer of the service providing device and a physical layer of the new subscriber device.
摘要:
A data transmission apparatus for use in a separate-type base station is provided. The data transmission apparatus includes: a digital unit configured to generate first data that includes transmission method information indicating a selected transmission method and data to be transmitted; a time-division synchronization control unit configured to, in response to the selected transmission method being time-division multiplexing (TDM), generate second data by including synchronization information for transmitting the first data using TDM in the first data; and a wavelength conversion unit configured to convert at least one of the first data and the second data into one or more wavelength optical signals using a predefined wavelength or a predefined group of wavelengths and transmit the wavelength optical signals to one or more radio stations.
摘要:
An apparatus for driving a wavelength-independent light source is provided. The apparatus includes a seed light signal generation unit configured to generate seed light signals with one or more wavelengths based on a wavelength identification signal, a wavelength light detection unit configured to detect the wavelength identification signal from the seed light signals, an extraction unit configured to extract wavelength information corresponding to the detected wavelength identification signal and extract a driving condition of a wavelength-independent light source corresponding to the extracted wavelength information, and a driving unit configured to drive the wavelength-independent light source according to the extracted driving condition.
摘要:
An Arrayed Waveguide Grating Router (AWGR) for wavelength multiplexing and demultiplexing is provided. According to an aspect, by generating phase differences of a plurality of received optical signals through an arrayed wavelength in which a plurality of waveguides having a predetermined length difference with respect to each other are arranged, and then coupling the optical signals with the different phase differences, wavelength multiplexing and wavelength demultiplexing are simultaneously performed using the maximum constructive interference and/or destructive interference effect of optical signals.
摘要:
In a method of allocating a bandwidth of a passive optical network, downward data are transmitted by varying a wavelength based on a wavelength division method and upward data are transmitted using a time division method. Thereby, by efficiently allocating a network bandwidth, data can be transmitted and by realizing statistical multiplexing, transmission efficiency can be improved.
摘要:
An apparatus for driving a wavelength-independent light source is provided. The apparatus includes a seed light signal generation unit configured to generate seed light signals with one or more wavelengths based on a wavelength identification signal, a wavelength light detection unit configured to detect the wavelength identification signal from the seed light signals, an extraction unit configured to extract wavelength information corresponding to the detected wavelength identification signal and extract a driving condition of a wavelength-independent light source corresponding to the extracted wavelength information, and a driving unit configured to drive the wavelength-independent light source according to the extracted driving condition.
摘要:
Provided are a fault localization apparatus based on an optical communication network and a method thereof. In the fault localization apparatus according to the present invention, a downstream light source is used as a monitoring optical signal instead of using an additional monitoring light source and a subcarrier multiplexing (SCM) monitoring pulse signal of a certain frequency band having no interference with a frequency band of a downstream data signal is used and thus a fault position may be detected at low cost.
摘要:
Provided are an apparatus and method for measuring signal performance and an apparatus for selecting a signal. The apparatus includes a wavelength selector selecting a signal having a specific wavelength from an input signal, a time selector selecting a signal input at a specific time from the selected signal having the specific wavelength, and a performance measurer measuring signal performance for the signal of the specific wavelength that is input at the specific time and selected by the time selector. Thus, it is possible to measure signal quality of each wavelength-division multiplexing (WDM)-time-division multiplexing (TDM) channel in a WDM-TDM hybrid environment.
摘要:
In a method of allocating a bandwidth of a passive optical network, downward data are transmitted by varying a wavelength based on a wavelength division method and upward data are transmitted using a time division method. Thereby, by efficiently allocating a network bandwidth, data can be transmitted and by realizing statistical multiplexing, transmission efficiency can be improved.
摘要:
Provided are a fault localization apparatus based on an optical communication network and a method thereof. In the fault localization apparatus according to the present invention, a downstream light source is used as a monitoring optical signal instead of using an additional monitoring light source and a subcarrier multiplexing (SCM) monitoring pulse signal of a certain frequency band having no interference with a frequency band of a downstream data signal is used and thus a fault position may be detected at low cost.