Abstract:
A highly aligned rare-earth transition metal alloy magnet material such as samarium-cobalt (SmCo.sub.5). The high degree of alignment is evidenced by an isolated X-ray diffraction pattern peak for Cu.sub.k.alpha. radiation at a interplane "d" spacing of 2.0 A.degree. and is produced by very high temperature deposition of the material on a hot surface. The surface temperature is maintained well above 800 degrees centigrade and most preferably is initially set at approximately 1020 degrees centigrade or higher at which temperature the isolated diffraction pattern peak dominates. A higher temperature typically occurs during deposition. Deposition of the material on the surface typically takes place by application of the material as a fine, homogeneously sized powder to the plasma flame of a plasma torch. The surface may be preheated by the application of the plasma flame to the surface without the application of the powdered material. A feedback controlled auxiliary heat source may also be used to facilitate maintaining the temperature of the surface at the very high temperature level.
Abstract:
A hybrid wafer gyroscope includes a combination of micro-machined components and traditional electromechanical components to form a miniature gyroscope having a high degree of stability. The gyroscope includes a rotor, gimbal, flexures, and stop cutouts micro-machined out of one or more layers of silicon, forming a unitary, planar, and disk-shaped rotor subassembly, which spins about a drive shaft.
Abstract:
A gas bearing and bearing surfaces capable of operating in an unlubricated configuration and providing reliable wear-resistant, start/stop cycling. The bearing typically comprises opposed surfaces of the same or different materials. A first surface is typically formed by ion implantation of boron into a beryllium metal bearing structure. The boron is typically implanted at a predetermined depth into the beryllium surface to provide a substantially pure beryllium surface. The second surface is typically PYROCERAM, a ceramic metal composite, such as a titanium diboride beryllium structure or a surface having titanium diboride and beryllium applied to a beryllium metal bearing structure by hot isostatic pressing facing. The second surface is adapted to run against the first, or against itself in the ceramic or ceramic surface case. The bearing configuration is capable of running reliably and with acceptably low wear through many start/stop cycles without the application of any lubricant. The titanium diboride, beryllium composite applied to a beryllium substrate finds further application such as in wear or impact-resistant surfaces.
Abstract:
Process for the formation of precipitation hardened beryllium-nickel, beryllium-iron, and beryllium-cobalt alloys and cermets for structural and bearing use respectively in precision instruments and such alloys and cermets. A beryllium-nickel, -iron, or -cobalt high solute solution at elevated temperature is rapidly cooled to provide a readily machined solid solution. After machining, the alloy is reheated to an intermediate temperature under controlled conditions where precipitation hardening occurs through limited precipitate cluster formation. A cermet is formed in the process with the addition of a ceramic material to the beryllium alloy in the initial steps.
Abstract:
Process and apparatus for forming plasma sprayed high density, high coercivity permanent magnet material and permanent magnets formed therefrom. The plasma sprayed permanent magnet material is obtained in a substantially amorphous state resulting from specifically controlled plasma spray parameters. The amorphous deposition possesses high coercivity, density and potential residual magnetism. The as-sprayed magnetic material is preferably heat treated and then densified to nearly maximum theoretical density. The amorphous structure permits retention of substantially all of the coercivity after heat treatment as well as densification to well over 95% of maximum theoretical density. In addition, magnetic materials, preferably fabricated in accordance with this plasma spraying technique as an amorphous deposit of permanent magnet material, are aligned in a magnetic field and thermally aged to produce permanent magnets in the presence of a thermal gradient or mechanical strain resulting in a high coercivity permanent magnet. Controlled crystalline deposits may also be utilized as the starting material for fabrication of the aligned magnets. The invention has application primarily with the use of permanent magnets formed of rare earth-cobalt alloys and in particular of samarium-cobalt alloys.
Abstract:
Method and apparatus for the formation of a molded article from powders and powder compacts of a material by pressure compaction of the powders under the influence of a thermally driven differential volume expansion of first and second elements constraining the powders. The volume expansion achieves a trippling of the compaction effect.
Abstract:
Method of building resistance to Covid-19 disease development. The strong link between the distribution of Covid-19 disease (CV) severity across the United States population and that of systemic inflammation, as indicated in the individual's C-reactive protein (CRP) level, explains the widely varied symptomatic responses of individuals afflicted with the virus. The data are consistent with the fewer infections and deaths reported for the Asian countries. The disease pathologies of CV and non-specific interstitial pneumonia (NSIP) patients bear close similarities. Modeling the disease as a chemically reactive process indicates that the virus catalyzes the inflammation driven reaction, causing lung infiltration and injury, up to and including patient death. Prevention methods involving exercise and diet successfully applied for lung stabilization in NSIP also apply to CV mitigation, the goal of which is to achieve pre-disease CRP levels of
Abstract:
Model and method of treating inflammatory diseases. Traditional treatments for such diseases include administering to the patient toxic anti-inflammatory drugs. Following stabilization of the symptoms, the drug doses are tapered down to minimize side effects, as a result of which inflammation remains high and the disease is rarely cured. A chemistry-based disease model concludes that irrespective of the role that inflammation plays in the disease, inflammation reduction will impede disease initiation and progression. Managing and controlling inflammatory diseases requires reducing inflammation to acceptable normal values. Non-toxic ways such as non-steroidal anti-inflammatory drugs, anti-inflammatory diets, and regular exercise allow such reduction in inflammation to normal values, thereby slowing down or arresting disease progression and allowing the discontinuation or reduction of toxic anti-inflammatory therapy while maintaining low inflammation using non-toxic therapy.
Abstract:
Model and method of treating inflammatory diseases. Traditional treatments for such diseases include administering to the patient toxic and-inflammatory drugs. Following stabilization of the symptoms, the drug doses are tapered down to minimize side effects, as a result of which inflammation remains high and the disease is rarely cured. A chemistry-based disease model concludes that irrespective of the role that inflammation plays in the disease, inflammation reduction will impede disease initiation and progression. Managing and controlling inflammatory diseases requires reducing inflammation to acceptable normal values. Non-toxic ways such as non-steroidal anti-inflammatory drugs, anti-inflammatory diets, and regular exercise allow such reduction in inflammation to normal values, thereby slowing down or arresting disease progression and allowing the discontinuation or reduction of toxic anti-inflammatory therapy while maintaining low inflammation using non-toxic therapy.
Abstract:
Model and method of treating inflammatory diseases. Traditional treatments for such diseases include administering to the patient toxic anti-inflammatory drugs. Following stabilization of the symptoms, the drug doses are tapered down to minimize side effects, as a result of which inflammation remains high and the disease is rarely cured. A chemistry-based disease model concludes that irrespective of the role that inflammation plays in the disease, inflammation reduction will impede disease initiation and progression. Managing and controlling inflammatory diseases requires reducing inflammation to acceptable normal values. Non-toxic ways such as anti-inflammatory diets and regular exercise allow such reduction in inflammation to normal values, thereby slowing down or arresting disease progression and allowing reduction in the required anti-inflammatory drug maintenance dose.