Abstract:
A method and apparatus are disclosed for accelerating Border Gateway Protocol (BGP) route convergence in an autonomous system. A virtual link identifier is assigned to each link of a set of communication links that are established between a BGP host and one or more network elements in one or more networks. For a particular link of the set of communication links, one or more routes that are reachable on the link are determined. The BGP host stores an association of the one or more routes with a BGP identifier of the BGP host and the virtual link identifier that is assigned to the particular link. The BGP host advertises the one or more routes to a BGP peer in a message, where the message includes the BGP identifier and the virtual link identifier.
Abstract:
Disclosed are, inter alia, methods, apparatus, data structures, computer-readable media, mechanisms, and means for withdrawing routes based on a query defined in a withdraw message. One or more route update messages identifying multiple routes with associated attributes and Type-Length-Value (TLV) values are received, and a routing database is updated to include the routes and their associated attributes and TLVs. A particular message associated with a route withdraw operation is received, with the particular message including an indication of at least two specified values and an operator, with each of the specified values being an attribute or a TLV. One or more routes are withdrawn from the routing database matching a query defined based on the specified values and the operator. In one embodiment, each of said attributes is a Border Gateway Protocol attribute. One embodiment includes sending a message including an advertisement of supporting MP_AGGREGATE_WITHDRAW capability.
Abstract:
In one embodiment, a method includes obtaining, at a first provider edge (PE) included a plurality of PEs multi-homed to a first customer edge (CE), traffic intended for the first CE, wherein the traffic includes a first indication, the first indication being configured to identify the traffic as flood traffic. A forwarding PE included in the plurality of PEs suitable to use to forward the traffic to the first CE is identified based on identifying traffic as the flood traffic. The method also includes determining whether the first PE is the forwarding PE, and providing the traffic to the first CE using the first PE when it is determined that the first PE is the forwarding PE. When it is determined that the first PE is not the forwarding PE, the traffic is filtered using the first PE.
Abstract:
In certain embodiments, performing a defensive procedure involves receiving at a first speaker of a first autonomous system a path advertisement from a second speaker of a second autonomous system. The path advertisement advertises a path from the second speaker of the second autonomous system. It is determined whether the second autonomous system is a stub autonomous system and whether a path length of the path is greater than one. If the second autonomous system is a stub and the path length is greater than one, a defensive measure is performed for the path. Otherwise, a default procedure is performed for the path.
Abstract:
In one embodiment, a method includes obtaining an indication that a device is attached to a provider edge. The device has a media access control (MAC) address, wherein the device was previously attached to a first provider edge (PE) of a Multiprotocol Label Switching (MPLS) network. The method also includes issuing a first advertisement that identifies the MAC address. The first advertisement includes a first MAC address mobility attribute arranged to indicate a number of times the MAC address has moved with respect to the MPLS network.
Abstract:
In an embodiment, a method comprises receiving a path advertisement comprising information about an available path and a well-known community value associated with the available path. A modified best path calculation is performed in response to receiving the available path either from a higher-ranked device or from a device that is not participating in diverse path calculation, resulting in creating a particular best path. The particular best path is advertised to other routers with or without a restriction indicator based on whether it is a client learned path or non-client iBGP peer learned path and based on whether the advertisement is directed to a client or a non-client iBGP peer.
Abstract:
The protection of multi-segment pseudowires by utilizing backup paths is disclosed herein. Disclosed embodiments include methods that establish at least one backup path for multi-segment pseudowires, the establishing being performed prior to detection of failure in the primary path. Upon detecting a path failure, the detected failure is signaled to the head-end, a backup path is chosen, and reachability information associated with the chosen backup path is signaled across the backup path before reverse traffic is switched to the backup path. In other disclosed embodiments, apparatus are configured to establish, prior to detection of failure in the primary path, at least one backup path for the multi-segment pseudowire.
Abstract:
An ability to compress packets is announced from a customer edge router (CE) to other CEs through a routing protocol packet. An announcement of that ability is received from another CE through a routing protocol packet. A compression technique is then matched. The CE receives compression information from the other CE in a routing protocol packet, and determines that a compression technique identified therein matches any compression technique the CE is programmed to use. The CE then flags packets transmitted from/received by the CE to be compressed/decompressed according to the matched compression technique. Alternatively, the CE may match by transmitting compression information identifying a compression technique to the another CE in a routing protocol packet; the another CE receives the routing protocol packet and determines that a compression technique identified in the compression information of the routing protocol packet matches any compression technique the another CE is programmed to use.
Abstract:
Devices executing routing protocols can mark routing protocol messages as urgent so that peer devices are signaled to consume the messages on an expedited basis. Performance of routing protocols improves as a result; for example, Border Gateway Protocol convergence time is reduced. An example router comprises a network interface, a processor, a transport layer protocol module that implements a transport layer network protocol, a routing protocol module that implements a network packet routing protocol and sends peering session messages over transport layer connections, and instructions to perform providing a first routing protocol message to the transport layer protocol module that comprises urgent data at least in part; requesting the transport layer protocol module to mark, as urgent, one or more data segments that carry the first routing protocol message; marking, as urgent, one or more segments that carry the first routing protocol message; and sending the segments to peer devices over the connections.
Abstract:
A method is disclosed for Border Gateway Protocol (BGP) service auto discovery. A first message is received from a first BGP host. The first message comprises first information that indicates that the first BGP host provides reachability information associated with one or more route types. The first information is stored. The first information is sent in a second message to a second BGP host, where the first BGP host and the second BGP host are not conducting a BGP peering session.