Abstract:
A monolithic ink-jet printhead, and a method of manufacturing the same, includes a substrate having an ink chamber, an ink channel, and a manifold, a nozzle plate formed on the substrate, a nozzle, a heater, and a conductor. The ink chamber includes sidewalls formed to a predetermined depth from the front surface of the substrate for defining side surfaces of the ink chamber and a bottom wall formed parallel to the front surface of the substrate at the predetermined depth from the front surface of the substrate for defining a bottom surface of the ink chamber. The nozzle plate includes a plurality of passivation layers, a heat dissipating layer being stacked on the passivation layers, and the nozzle for ejecting ink out of the printhead. The heater is positioned above the ink chamber and heats ink in the ink chamber and the conductor delivers a current to the heater.
Abstract:
A method of manufacturing a black matrix of a color filter includes forming a light-shielding layer of a hydrophobic organic material on a surface of a transparent substrate, forming a blocking layer of a fluorinated resin on a top surface of the light-shielding layer, patterning the light-shielding layer and the blocking layer to form the black matrix, the black matrix having a top surface formed with the blocking layer, and heating the black matrix formed with the blocking layer and irradiating UV light towards an upper portion of the black matrix.
Abstract:
An image drum for selectively adsorbing toner in a printing apparatus is provided. A method and a configuration of ring electrodes formed on an outside of a drum body is also provided. That is, a control board is mounted inside the drum body, of which a plurality of terminals is externally exposed in the cylindrical drum body, and a photocurable resin is coated on the circumferential surface. Ring electrodes are then formed on circumferential surface of the drum body, by rotating the drum body and allowing an ultraviolet ray through the mask pattern onto the drum body to harden the liquid photocurable resin after contacting a mask-patterned mold mask to the circumferential surface of the drum body.
Abstract:
An ink-jet printhead includes a substrate on which an ink chamber to be supplied with ink to be ejected is formed on a front surface of the substrate, a manifold for supplying ink to the ink chamber is formed on a rear surface of the substrate, and an ink passage in communication with the ink chamber and the manifold is formed parallel to the front surface of the substrate, a nozzle plate formed on the front surface of the substrate, a nozzle formed through the nozzle plate through which ink is ejected from the ink chamber, a heater formed on the nozzle plate, and an electrode electrically connected to the heater for applying current to the heater.
Abstract:
A method of fabricating micro-electromechanical system (MEMS) structures that can prevent stiction between a microstructure and a substrate or adjacent structures after etching for releasing the microstructure is provided. In a micromaching process for fabricating a microstructure suspended above a substrate using a sacrificial layer, the fabricating method includes stacking an anti-stiction layer, which can be removed by dry etching, before or after stacking a sacrificial layer.
Abstract:
An image drum for selectively adsorbing toner in a printing apparatus is provided. A method and a configuration of ring electrodes formed on an outside of a drum body is also provided. That is, a control board is mounted inside the drum body, of which a plurality of terminals is externally exposed in the cylindrical drum body, and a photocurable resin is coated on the circumferential surface. Ring electrodes are then formed on circumferential surface of the drum body, by rotating the drum body and allowing an ultraviolet ray through the mask pattern onto the drum body to harden the liquid photocurable resin after contacting a mask-patterned mold mask to the circumferential surface of the drum body.
Abstract:
An image forming apparatus that may be easily and inexpensively manufactured is provided. The image forming apparatus includes: a toner supply unit; an image forming element to which toner is adsorbed from the toner supply unit; an image developing unit disposed on an outer side of the image forming element, wherein said image developing unit selectively separates from the image forming element at least a part of the toner adsorbed to the image forming element in order to develop an image on the image forming element; and a toner return unit which returns the toner separated from the image forming element by the image developing unit to the toner supply unit.
Abstract:
In one embodiment, the electrowetting device includes a first medium; a second medium that is not mixed with the first medium and has a refractive index different from a refractive index of the first medium; an upper electrode that adjusts an angle of a boundary surface between the first medium and the second medium; and a barrier wall that has a side surface surrounding the first and second mediums, allows the upper electrode to be disposed on a portion of the side surface, and has irregular widths.
Abstract:
Wire grid polarizers, methods of fabricating a wire grid polarizer and display panels including a wire grid polarizer are provided, the methods include preparing a mold having a lower surface in which a plurality of parallel fine grooves are formed, and arranging the mold on a transparent substrate. The plurality of parallel fine grooves are filled with a conductive liquid ink. A plurality of parallel conductive nano wires are formed on the transparent substrate by curing the conductive liquid ink. The mold is removed.
Abstract:
Provided are a thin film transistor for display devices and a manufacturing method of the thin film transistor. The thin film transistor for display devices includes: a flexible substrate; a gate electrode layer formed on the flexible substrate; a first insulating layer formed on the flexible substrate and the gate electrode; a source and a drain formed on the first insulating layer; an active layer formed on the first insulating layer between the source and the drain; a second insulating layer formed on the first insulating layer, the source, the drain, and the active layer; and a drain electrode that opens the second insulating layer to be connected to the drain and is formed of a CNT dispersed conductive polymer.