Abstract:
A method and apparatus for supporting a movable member (10) with respect to a fixed member (40) is provided. The movable member (10) includes a magnetically permeable portion (81) contained therein and magnetic element (50) fixedly attached thereto and movable therewith. The movable member (10) is supported for rotation with respect to the fixed member (40) by an outer bearing surface (11) of the movable member and an inner bearing surface (20) of the fixed member (40). The fixed member (40) provides access to the movable member (10) from two sides thereof. A magnetically permeable stator element (70) is fixedly attached to the fixed member (40) and positioned within a magnetic flux field of the magnetic element (50) such that an air gap (73) is formed between the magnetic element (50) and the stator element (70). Accordingly a magnetic traction force acts across the air gap (73) for urging the moveable member (10) toward the fixed member (40) thereby clamping the movable element in a fixed orientation with respect to the movable element. The stator element (70) includes stator current coils (60) wound onto portions of the stator element for inducing electromagnetic forces within the stator element in response to a current passing through the coils. The electromagnetic force acts on the magnetic element (50) to move the movable member (10) in a controllable manner.
Abstract:
A method of calibrating a laser marking system includes calibrating a laser marking system in three dimensions. The step of calibrating includes storing data corresponding to a plurality of heights. A position measurement of a workpiece is obtained to be marked. Stored calibration data is associated with the position measurement. A method and system for calibrating a laser processing or marking system is provided. The method includes: calibrating a laser marker over a marking field; obtaining a position measurement of a workpiece to be marked; associating stored calibration data with the position measurement; relatively positioning a marking beam and the workpiece based on at least the associated calibration data; and calibrating a laser marking system in at least three degrees of freedom. The step of calibrating includes storing data corresponding to a plurality of positions and controllably and relatively positioning a marking beam based on the stored data corresponding to the plurality of positions.
Abstract:
Laser system and method for material processing with ultra fast lasers are provided. One aspect of the invention features the method which removes at least a portion of a target structure such as a memory link while avoiding undesirable damage to adjacent non-target structures. The method includes applying a single ultra short laser pulse to the target structure to remove the target structure with the single pulse.
Abstract:
The field portion (40) of a workpiece (14) that an electro-optical system (28) can image is deflected by a field-of-view deflector (38) and an array of light sources (42, 44) illuminates the workpiece. As the field of view (40) moves about the workpiece surface, individual sources (42, 44) in the light-source array are so turned on and off that all sources that could be imaged into the field of view by specular reflection are turned off. In this way, proper dark-field illumination is maintained.