Abstract:
Some embodiments include an image sensor and a zoom lens assembly including a plurality of movable lens elements arranged to be moved independent of one another. In some embodiments, the plurality of movable lens elements share an optical axis. Some embodiments include a lens and mirror assembly for admitting light to the miniature camera. The lens and mirror assembly includes a folded optics arrangement such that light enters the lens and mirror assembly through a first lens with an optical axis of the first lens orthogonal to the plurality of moveable lens elements. The lens and mirror assembly includes a mirror for folding the path of light from the optical axis of the first lens to the optical axis of the plurality of movable lens elements, and the lens and mirror assembly further includes an actuator for tilting the mirror.
Abstract:
The disclosure provides an anti-tilt electromagnetic motor, including a flame, a support base, a contact assembly, a drive assembly, and an elastic assembly. The support base is arranged movably relative to the frame along an axis. The contact assembly is disposed between the frame and the support base and directly contacts the frame and the support base. The drive assembly is configured to drive the support base to move. The elastic assembly is configured to provide a pre-loading force so as to enable the contact assembly to be compressed by the frame and the support base simultaneously.
Abstract:
An EUV optical apparatus includes a number of adjustable mirrors (22x) on mirror bodies (120). Each mirror body is supported on an actuator (100x) comprising a moving part (132, 134, 136) and a fixed casing part (128, 130). The actuator provides a resilient support (140, 142) for the mirror body so that it is tiltable with two degrees relative to the casing. An electromagnetic motor (166, 170-178) applies first part, under the influence of an applied motive force, the resilient mounting being arranged to provide a biasing force that resists said motive force. A magnetic coupling (102, 104a, 104b) is arranged between the moving and fixed parts so as to provide a counter-biasing force. The counter-biasing force partly opposes said biasing force and thereby reduces the motive force required to effect a given displacement. The actuator can thus be made with reduced size, weight and heat dissipation.
Abstract:
A beam steering mirror device includes a mirror having an optical part with a reflecting or optical surface and a mirror body. The optical part is essentially thermally de-coupled from the body. A biaxial suspension of the mirror body has two rotation axes arranged essentially perpendicular with respect to each other and being located in a common plane. The suspension includes a set of four flexible pivots with a pair of pivots assigned to each rotation axis. The mirror is arranged with regard to the biaxial suspension such that its center of mass is approximately located in the intersection point of the two rotation axes. The device also includes motors for moving of the mirror body around the two rotation axes, sensors for determining the tilting angle of the mirror, and a housing for the mirror, the biaxial suspension, the motors and the sensors.
Abstract:
The subject matter disclosed herein relates to an imaging device including an epoxy reservoir and a number of features to facilitate alignment of components during assembly of the imaging device.
Abstract:
The invention claimed is a novel magnetic mirror air bearing for a Michelson interferometer with lateral motion. A precise kinematic mount is used in combination with magnetic fields wherein current can be applied on a centerline to move a piston and mirror laterally without pitch and yaw so as to effect accurate light beam reflection regardless of distance of lateral movement within a defined space. The assembly is able to operate across extended temperature ranges by utilizing materials which expand and contract at similar rates, and contains a thermalizing cavity which will thermalize the gas to avoid temperature induced artifacts.
Abstract:
The invention provides for an improved mirror scanning system for use with a millimeter wave imaging system. The mirror scanning system includes a pair of voice coil actuators aligned generally perpendicular to a mirror. The voice coils are intermittently energized pursuant to a predetermined frequency related to a desired resolution. A base supports a back plate that is generally disposed parallel to the mirror and secures the pair of voice coil actuators. A rod flexure is secured to a center yoke, or coil bobbin, of each of the respective voice coils and to a back side of the mirror so that the pair of rod flexures simultaneously exert a force on the mirror causing deflection thereon as the pair of voice coils are energized. Stationary position sensors are mounted adjacent to each cylinder so the sensor can determine to location of the cylinder, and hence the angle of the mirror.
Abstract:
A permanent magnet fixed to a peripheral portion of a lens cell includes two magnets that are joined together so that the north poles face each other and the south poles are exposed. A first driving coil is arranged to face toward exits for lines of magnetic force from the joining surfaces of the north poles of the permanent magnet, and a second driving coil is arranged to face toward entrances for lines of magnetic force in the permanent magnet. The orientation of the lens is adjusted by adjusting the currents supplied to the first driving coil and second driving coil to drive the lens cell in an optical axis direction and horizontal direction in a state in which the lens cell is levitated relative to the cover.
Abstract:
The present invention provides a positioning apparatus capable of performing six-axis micro adjustment of an optical element in an exposure apparatus with high accuracy, and the exposure apparatus. The positioning apparatus of the present invention includes a first measurement unit for measuring a position/inclination of a moving part having an optical element while being kept from contact with the moving part, and a driving unit capable of driving the moving part in directions of six axes with respect to a fixed part while being kept from contact with the moving part, based on the result of measurement by the first measurement unit.
Abstract:
The present invention provides a positioning apparatus capable of performing six-axis micro adjustment of an optical element in an exposure apparatus with high accuracy, and the exposure apparatus. The positioning apparatus of the present invention includes a first measurement unit for measuring a position/inclination of a moving part having an optical element while being kept from contact with the moving part, and a driving unit capable of driving the moving part in directions of six axes with respect to a fixed part while being kept from contact with the moving part, based on the result of measurement by the first measurement unit.