Abstract:
A laser processing system is disclosed for providing a relatively small velocity of a laser beam at target location while at least one scanner scans at a relatively larger velocity. The system includes a laser source, a first scanning unit, a beam expander, a second scanning unit and focusing optics. The laser source is for providing a pulsed laser output having at least one beam with a beam dimension. The first scanning unit is for scanning the laser output in a first direction along a first axis at the target location. The beam expander is for receiving the laser output and for modifying a beam diameter of the laser output and providing a modified laser output. The second scanning unit is for scanning the modified laser output from the beam expander in a second direction along the first axis at the target location. The second direction is substantially opposite to the first direction along the first axis such that a net velocity of the modified laser output along the first axis at the target location may be made to be effectively zero during a laser pulse. The focusing optics is for focusing the modified laser output toward the target location.
Abstract:
A method of fabricating a plurality of composite optical assemblies is disclosed. Each optical assembly includes a first optical element and a second optical element. The method includes the steps of providing a first composite substrate that may be divided into a plurality of first optical elements and forming on an exposed surface of the first composite substrate a second composite substrate that may be divided into a plurality of second optical elements, the first and second composite substrates providing a composite structure.
Abstract:
A method and system for adaptively controlling a laser-based material processing process are provided. The system includes sensing equipment to measure a process variable or condition of at least one of a laser-based material processing system and a workpiece processed by the material processing system and to provide a corresponding measurement signal. The control system also includes a signal processor for processing the measurement signal to obtain a processed signal which initiates, at least semi-automatically, an action associated with at least one of the material processing system and the workpiece. A method and system for at least semi-automatically qualifying a laser-based material processing system which delivers laser energy to locations on or adjacent a plurality of microstructures formed on a workpiece to at least partially process the microstructures are also provided.
Abstract:
A method of calibrating a laser marking system includes calibrating a laser marking system in three dimensions. The step of calibrating includes storing data corresponding to a plurality of heights. A position measurement of a workpiece is obtained to be marked. Stored calibration data is associated with the position measurement. A method and system for calibrating a laser processing or marking system is provided. The method includes: calibrating a laser marker over a marking field; obtaining a position measurement of a workpiece to be marked; associating stored calibration data with the position measurement; relatively positioning a marking beam and the workpiece based on at least the associated calibration data; and calibrating a laser marking system in at least three degrees of freedom. The step of calibrating includes storing data corresponding to a plurality of positions and controllably and relatively positioning a marking beam based on the stored data corresponding to the plurality of positions.
Abstract:
A non-symmetrical scanning mirror for a laser scanning system is stiffer at a bottom end than at a top end. The mirror, which is driven from the bottom end, has a relatively high resonant frequency and can thus accelerate quickly and smoothly. The mirror may be wider or thicker at the bottom end or it may be made stiffer by attaching stiffeners to the bottom end.
Abstract:
A laser processing system is disclosed for providing a relatively small velocity of a laser beam at target location while at least one scanner scans at a relatively larger velocity. The system includes a laser source, a first scanning unit, a beam expander, a second scanning unit and focusing optics. The laser source is for providing a pulsed laser output having at least one beam with a beam dimension. The first scanning unit is for scanning the laser output in a first direction along a first axis at the target location. The beam expander is for receiving the laser output and for modifying a beam diameter of the laser output and providing a modified laser output. The second scanning unit is for scanning the modified laser output from the beam expander in a second direction along the first axis at the target location. The second direction is substantially opposite to the first direction along the first axis such that a net velocity of the modified laser output along the first axis at the target location may be made to be effectively zero during a laser pulse. The focusing optics is for focusing the modified laser output toward the target location.
Abstract:
A method of fabricating a plurality of composite optical assemblies is disclosed. Each optical assembly includes a first optical element and a second optical element. The method includes the steps of providing a first composite substrate that may be divided into a plurality of first optical elements and forming on an exposed surface of the first composite substrate a second composite substrate that may be divided into a plurality of second optical elements, the first and second composite substrates providing a composite structure.
Abstract:
A reflective metrological scale has a scale pattern of elongated side-by-side marks surrounded by reflective surface areas of a substrate, which may be a nickel-based metal alloy such as Invar® or Inconel® and may be a thin and elongated flexible tape. Each mark has a furrowed cross section and may have a depth in the range of 0.5 to 2 microns. The central region of each mark may be rippled or ridged and may be darkened to provide an enhanced optical reflection ratio with respect to surrounding reflective surface areas. A manufacturing method includes the repeated steps of (1) creating a scale mark by irradiating a surface of the substrate at a mark location with a series of overlapped pulses from a laser, each pulse having an energy density of less than about 1 joule per cm2, and (2) changing the relative position of the laser and the substrate by a displacement amount defining a next mark location on the substrate at which a next mark of the scale is to be created.
Abstract:
A method of fabricating a plurality of composite optical assemblies is disclosed. Each optical assembly includes a first optical element and a second optical element. The method includes the steps of providing a first composite substrate that may be divided into a plurality of first optical elements and forming on an exposed surface of the first composite substrate a second composite substrate that may be divided into a plurality of second optical elements, the first and second composite substrates providing a composite structure.
Abstract:
A reflective metrological scale has a metal tape substrate and a scale pattern of elongated side-by-side marks surrounded by reflective surface areas of the substrate. Each mark has a furrowed cross section and may have a depth in the range of 0.5 to 2 microns. The central region of each mark may be rippled and darkened to provide an enhanced optical reflection ratio with respect to surrounding surface areas. A manufacturing method includes the repeated steps of (1) creating a scale mark by irradiating the substrate surface at a mark location with overlapped pulses from a laser, each pulse having an energy density of less than about 1 joule per cm2, and (2) changing the relative position of the laser and the substrate by a displacement amount defining a next mark location on the substrate at which a next mark of the scale is to be created.
Abstract translation:反射计量标尺具有金属带基板和由基板的反射表面区域包围的细长的并排标记的刻度图案。 每个标记具有沟槽的横截面并且可以具有在0.5至2微米范围内的深度。 每个标记的中心区域可能波纹和变暗,以提供相对于周围表面区域的增强的光反射率。 一种制造方法包括以下重复步骤:(1)通过在来自激光器的重叠脉冲的标记位置处照射基板表面来产生刻度标记,每个脉冲具有小于约1焦耳/ cm 2的能量密度,以及(2) 改变激光器和衬底的相对位置一个位移量,该位移量限定了要在其上产生刻度的下一个标记的衬底上的下一个标记位置。