Abstract:
A method and an apparatus for enhancing a resolving power of a tunable optical filter. An optical input is applied to the tunable filter. An electrical signal is applied to the tunable optical filter. The electrical signal has a first component that has a first frequency and a second component that has a second frequency. The second frequency is higher than the first frequency. An optical output of the tunable optical filter is applied to a photodetector. The electrical output from the photodetector is applied to a lock-in detector. The lock-in detector receives an input from frequency doubling circuitry. An output of the lock-in detector is monitored.
Abstract:
An optical exchanging apparatus is disclosed including N optical transmitters for generating optical signals each having a single constant mode, N mode converters for converting modes of the optical signals generated from the optical transmitters according to a mode-converting signal, an Nx1 coupler for coupling the mode-converted optical signals generated from the mode converters to be supplied to one terminal, a 1xN distributor or distributing the coupled optical signal generated from the Nx1 coupler to N optical signals each having various modes, N mode selectors for respectively passing only the optical signal of a selected mode out of the N optical signals generated from the 1xN distributor, and N optical receivers for receiving the optical signals generated from the mode selectors.
Abstract:
A vent structure for electromagnetic shielding includes: a conductive shielding case having a vent formed therein: a conductive shielding duct installed on the shielding case so as to cover the vent, including a space formed perpendicular to the direction of motion of air discharged from the vent to vent the air and a discharge port connected from the space to the outside to discharge the air introduced into the space to the outside, and shielding electromagnetic waves; and an EMI (Electro Magnetic Interference) gasket installed at a bonding surface between the shielding case and the shielding duct, and electrically connecting the shielding case and the shielding duct.
Abstract:
A vent structure for electromagnetic shielding includes: a conductive shielding case having a vent formed therein: a conductive shielding duct installed on the shielding case so as to cover the vent, including a space formed perpendicular to the direction of motion of air discharged from the vent to vent the air and a discharge port connected from the space to the outside to discharge the air introduced into the space to the outside, and shielding electromagnetic waves; and an EMI (Electro Magnetic Interference) gasket installed at a bonding surface between the shielding case and the shielding duct, and electrically connecting the shielding case and the shielding duct.
Abstract:
Provided is a device for preventing eavesdropping through a speaker. More particularly, a device for preventing eavesdropping by transmitting a jamming signal through a speaker common signal line is provided, the device including: a jamming signal generator for generating a jamming signal comprising a noise signal; an amplifier for amplifying the jamming signal; and a transformer for receiving the amplified jamming signal from the amplifier and outputting the amplified jamming signal to a speaker common signal line. The device may transmit a jamming signal in an audible frequency band to the speaker common signal line, thereby rendering conversations unrecognizable to eavesdroppers when an electrical signal induced from a speaker is detected through the speaker common signal line.
Abstract:
An apparatus for preventing leakage of a weak signal from a speaker is provided. The apparatus passes a normal speaker drive signal coming through speaker signal lines and blocks a weak signal generated by the sounds around the speaker, thereby preventing wiretapping the speaker.
Abstract:
A surge protection apparatus is provided. The surge protection apparatus includes a non-linear element unit, a signal generation unit, and a switching element unit. The non-linear element unit enables an electrical surge to pass therethrough by rapidly decreasing resistance of the non-linear element unit when the difference in voltage between two ends of the non-linear element unit is equal to or greater than a predetermined value. The signal generation unit generates a control signal in response to current which passes through the non-linear element unit. The switching element unit switches the status thereof in response to the control signal.
Abstract:
Provided is a device for preventing eavesdropping through a speaker. More particularly, a device for preventing eavesdropping by transmitting a jamming signal through a speaker common signal line is provided, the device including: a jamming signal generator for generating a jamming signal comprising a noise signal; an amplifier for amplifying the jamming signal; and a transformer for receiving the amplified jamming signal from the amplifier and outputting the amplified jamming signal to a speaker common signal line. The device may transmit a jamming signal in an audible frequency band to the speaker common signal line, thereby rendering conversations unrecognizable to eavesdroppers when an electrical signal induced from a speaker is detected through the speaker common signal line.
Abstract:
An apparatus for preventing leakage of a weak signal from a speaker is provided. The apparatus passes a normal speaker drive signal coming through speaker signal lines and blocks a weak signal generated by the sounds around the speaker, thereby preventing wiretapping the speaker.
Abstract:
An optical transmitter has a resonance wavelength characteristic that varies with the refractive index of the optical transmitter. The optical transmitter receives a narrow band injected wavelength signal from an incoherent light source. The controller substantially matches a resonant wavelength of the optical transmitter to the wavelength of the injected wavelength signal by changing the refractive index of the optical transmitter to substantially match the resonant wavelength of the optical transmitter and the wavelength of the injected wavelength signal. A detector measures a parameter of the optical transmitter to provide a feedback signal to a controller to determine when the resonant wavelength of the optical transmitter and the wavelength of the injected wavelength signal are substantially matched.