Abstract:
An inductor; a first switch having a first side connected to a first voltage source (VS1); a second switch having a first side connected to a second side of the first switch (2SS1), and a second side connected to a first side of the inductor (1SI); a third switch having a first side connected to the 1SI; a fourth switch having a first side connected to a second side of the third switch (2SS3), and a second side connected to a second voltage source (VS2); a fifth switch having a first side connected to the 1SI, and a second side connected to the VS1 and/or the VS2; a first capacitor having a first side connected to the 2SS1, and a second side connected to the 2SS3; and a second capacitor having a first side connected to a second side of the inductor, and a second side connected to the VS2.
Abstract:
The present disclosure shows ways to use multiple “integrated voltage regulator (IVR) units” to offer IVRs that can cover a wide range of specifications without having to design separate IVRs for different specifications. Instead of designing separate IVRs and paying for separate mask sets for IVRs targeting different specifications (e.g., different design and mask sets for 1 A IVR, 5 A IVR), the disclosed embodiments present ways to design and fabricate large numbers of the same unit IVRs (e.g., 1 A IVR) and decide how many of them to use post-fabrication to deliver different current specifications (e.g., use five 1 A unit IVRs for 5 A, use ten 1 A unit IVRs for 10 A). These disclosed embodiments reduce the mask cost of fabricating IVRs for different specifications and reduce design time by focusing on a single unit IVR.
Abstract:
A voltage regulator system, comprising: a switched capacitor (SC) regulator that operates at a switching frequency and receives an input voltage; and a controller configured to control an operation of the SC regulator by adjusting the switching frequency of the SC regulator based on efficiency. In some embodiments, the switching frequency is swept to determine a best efficiency. In some embodiments, the switching frequency is swept at each of a plurality of values for the input voltage. In some embodiments, the system includes further one or more switches in series with the SC regulator. In some embodiments, the SC regulator includes an output terminal that is coupled to a battery.
Abstract:
Systems for charging a battery are provided, the systems comprising: a regulator having an output coupled to the battery and having an input; a wireless charging receiver having an output coupled to the input of the regulator and having an input that receives a power signal from a wireless charging transmitter; a controller having a first input coupled to the input of the regulator, having a second input coupled to the output of the regulator, and having a first output coupled to the wireless charging transmitter, wherein the controller is configured to send, using the first output of the controller, a control signal to the wireless charging transmitter that causes the wireless charging transmitter to change the power signal provided to the wireless charging receiver.
Abstract:
The present disclosure shows a hybrid regulator topology that can be more easily integrated and that can maintain high efficiency across a wide output and input voltage range, even with a small inductor. The hybrid regulator topology can include two types of regulators: a flying switched-inductor regulator and a step-down regulator that divides the input voltage into an M/N fraction of the input voltage. The disclosed embodiments of the hybrid regulator topology can reduce the capacitive loss of the flying switched-inductor regulator by limiting the voltage swing across the switches in the flying switched-inductor regulator. The disclosed embodiments of the hybrid regulator topology can reduce the inductor resistive loss of the flying switched-inductor regulator by operating the flying switched-inductor regulator at a high switching frequency and with a small amount of current flow through the inductor.
Abstract:
The present disclosure includes a feedback system that can control hybrid regulator topologies that have multiple converters or regulators connected in series. The hybrid regulator can include at least two regulators: a switched inductor regulator and a switched-capacitor regulator. The disclosed embodiments of the feedback system can simplify feedback design for the hybrid regulator that can include multiple converter stages. These disclosed embodiments can control the feedback to improve the efficiency of a hybrid regulator.
Abstract:
The present disclosure shows ways to use multiple “integrated voltage regulator (IVR) units” to offer IVRs that can cover a wide range of specifications without having to design separate IVRs for different specifications. Instead of designing separate IVRs and paying for separate mask sets for IVRs targeting different specifications (e.g., different design and mask sets for 1 A IVR, 5 A IVR), the disclosed embodiments present ways to design and fabricate large numbers of the same unit IVRs (e.g., 1 A IVR) and decide how many of them to use post-fabrication to deliver different current specifications (e.g., use five 1 A unit IVRs for 5 A, use ten 1 A unit IVRs for 10 A). These disclosed embodiments reduce the mask cost of fabricating IVRs for different specifications and reduce design time by focusing on a single unit IVR.
Abstract translation:本公开显示了使用多个“集成稳压器(IVR)单元”来提供能够覆盖广泛规格的IVR的方式,而不必为不同规格设计单独的IVR。 代替设计单独的IVR并支付针对不同规格的IVR的单独掩模集(例如,针对1A IV IVA,5A A IVR的不同设计和掩模集),所公开的实施例提出了设计和制造大量相同单元IVR的方式 (例如,1 A IVR),并决定其中有多少使用后期制作来提供不同的当前规范(例如,使用5 A 1 A单位IVR为5 A,使用10个1A单位IVR为10 A)。 这些公开的实施例减少了针对不同规格制造IVR的掩模成本,并且通过集中于单个单元IVR来减少设计时间。
Abstract:
Circuit comprising: a first switch (1S) having: a first side (FS) connected to an input node (IN); and a second side (SS); a first capacitor (FC) having: FS connected to SS of 1S; and SS; a second switch having: FS connected to SS of FC; and SS connected to a voltage level node; a third switch having: FS connected to SS of FC; and SS connected to a voltage output node; a fourth switch (4S) having: FS connected to IN; and SS; a second capacitor (SC) having: FS connected to SS of 4S; and SS; a fifth switch having: FS connected to SS of SC; and SS connected to the voltage level node; a sixth switch having: FS connected to SS of SC; and SS connected to the voltage output node; a first connection node connected to FS of FC; and a second connection node connected to FS of SC.
Abstract:
A circuit comprising: a first switch having: a first side connected to a first node; and a second side connected to a second capacitor's first side (2C1S); a second switch having: a first side connected to a second capacitor's second side (2C2S); and a second side connected to a first capacitor's first side (1C1S); a third switch having: a first side connected to a first capacitor's second side (1C2S); and a second side connected to a second node (2VN); a fourth switch having: a first side connected to 2C2S; and a second side connected to a third node (3VN); a fifth switch having: a first side connected to 2C1S; and a second side connected to 1C1S; a sixth switch having: a first side connected to 1C2S; and a second side connected to 3VN; a seventh switch having: a first side connected to 1C1S; and a second side connected to 2VN.
Abstract:
A switching capacitor regulator, comprising: a switching capacitor configured to switch between a first state and a second state, wherein, in the first state, a first node of the switching capacitor is coupled to a second terminal, and a second node of the switching capacitor is coupled to a fixed voltage level, and wherein, in the second state, the first node is coupled to a first terminal, and the second node is coupled to the second terminal; a power switch configured to couple the second node to the second terminal when the switching capacitor is in the second state; and a flying inverter configured to control the power switch, wherein the flying inverter has a positive power terminal and a negative power terminal, wherein the positive power terminal is coupled to the first node, and wherein the negative power terminal is coupled to the second node.