Abstract:
A method is provided for treating a patient having a disorder, wherein the method includes irradiating a tissue surface of the patient with at least one laser beam, automatically monitoring the tissue, and automatically controlling the at least one laser beam to adjust and/or terminate the treatment in a therapeutically effective manner. The method noninvasively determines in real-time the irradiance and/or radiant exposure of a target tissue at a predetermined depth below the tissue surface by detecting the radial dependence of light remitted from the tissue surface. Preferably, the method employs a near-infrared light laser beam and a visible laser light beam in combination. An apparatus for performing the method is also provided.
Abstract:
Apparatus for exciting a fluorescent or phosphorescent molecule applied to a specimen in a microscope, the molecule having a known excitation wavelength, comprises a semiconductor light source capable of emitting an output light within a preselected wavelength band correlated with the excitation wavelength of the molecule, an electronic controller coupled to the light source for controlling the intensity of the output light, and an optical system for converting the output light into an excitation beam having a pre-selected distribution of light flux suitable for illuminating the specimen. The semiconductor light source is preferably a light emitting diode or superluminescent diode. The subject invention provides for a fluorescence excitation illuminator having a long lifetime and relatively low cost. Intensity modulation or attenuation can be achieved electronically, without the need for shutters.
Abstract:
A solid-state fluorescent dosimeter for monitoring therapy irradiation dosage during a photodynamic therapy procedure. The solid-state fluorescent dosimeter includes an optical fiber -having a distal end and a proximal end, and a solid-state fluorescent tip attached to the proximal end of the optical fiber. The solid-state fluorescent tip includes a fluorescent material which emits fluorescence when exposed to non-ionizing radiation in the visible or near infrared range. The solid-state fluorescent tip has a sufficient length so as ensure isotropic response characteristics to the non-ionizing radiation regardless of the orientation or alignment of the solid-state fluorescent tip relative to the irradiation source.
Abstract:
The invention features a probe for radiance dosimetry. The probe includes a tip portion containing a fluorescent dye connected to a translucent spacer element.