Abstract:
A packaged container for producing a graphical image. The packaged container includes a container having a side wall defining an interior space and a recessed surface. An interlaced image is provided on the recessed surface, and the packaged container includes a lens element positioned on the side wall to extend across the recessed surface proximate to the printed image and to leave a focusing gap between the lens element and the interlaced image. The lens element includes a plurality of lenses each having a focal point on or about the interlaced image. The lenses have a focal length determined by the thickness of the lens element combined with a depth of the recessed surface as measured from a side of the lens element to the interlaced image. The lens element can be provided in a wrap around label attached to the side wall on both sides of the recessed surface.
Abstract:
An assembly for displaying an interlaced image. The assembly includes an interlaced image, which may be digitally or web printed for example, with sets of elongate image elements or slices A lens arrays is provided with a first side proximate the interlaced image such as a planar surface and a second side distal the image with numerous lens sets. Each of the lens sets is paired with one of the sets of the image elements and includes a number of linear or elongate lenses that are each mapped to one to three image elements. The lenses are each configured to focus light from the subset of image elements to a viewer along a focus direction or line. The lenses are configured to provide a lens-specific viewing angle with a focus line, and the focus line to the paired image element subset differs from other lenses or is unique.
Abstract:
A container for producing a graphical image within the container. The container includes a container wall with a front portion and a rear portion. A label is included that extends about the circumference of the container with an inner surface contacting an exterior surface of the rear portion of the container wall and contacting an exterior surface of the front portion of the container wall. The label includes a lenticular lens array integral with the label to include a plurality of lenses formed, such as through embossing, on the outer surface of the label. The lenses have a focal point on or about the rear portion of the container wall with the lenticular lens array positioned near the front portion of the container wall. A printed image is provided and positioned proximal to the focal point on the inner surface of the label.
Abstract:
A container with a lenticular lens system integrally formed in a clear sidewall with the lenticular material or lenticules on an exterior or outer surface of the sidewall and a registration framework or system on the interior or inner surface of the sidewall. The registration framework includes a side registration post with a pair of side registration shelves for receiving side edges of an inserted label. The framework includes upper and lower registration shelves extending about the periphery of the interior surface of the sidewall between a top and a bottom portion of the side post between the pair of side registration shelves. The registration shelves define a registration area having a shape and size corresponding to the label. Sealing flaps extend along the shelves for sealing the label within the cup. The label includes image strips covered by an adhesive layer for bonding with the sidewall surface.
Abstract:
A process for printing a two-sided visual display for attachment to a window, screen or object is provided which can be identically viewed from either side of the support surface. The carrier sheet is of the electrostatic adhesion type which clings to the support surface without glue or other adhesives. The display is formed by being printed on one side of the flexible transparent carrier sheet with quick drying inks having the final desired color. The inks are applied directly to the carrier sheet without overlap or underlayment. Each color segment can be overprinted in order to emphasize and enhance the color of the individual sections. A cover sheet can be applied to the display to facilitate handling and storage. The final product when in place can be visibly observed from either side with equal clarity and appearance.
Abstract:
An optical product that includes a transparent lens sheet, which has a first side with a plurality of side-by-side sets of linearly arranged lenses. Each of the sets of lenses is at a slant angle in the range of 10 to 46 degrees from a vertical or a horizontal axis of the lens sheet. The product includes an image layer that includes pixels from a number of digital images. The pixels are arranged in a pattern of pixel locations providing non-orthogonal interlacing of the digital images relative to each of the sets of the linearly arranged lenses. The pattern of pixel locations aligns a number of the pixels from each of the digital images to be parallel to a line extending through a center of the linearly arranged lenses in each set. Each of the linearly arranged lenses may have a round base, a hexagonal base, or a square base.
Abstract:
An image display system for displaying interlaced images to achieve three dimensional effects. The system includes a user electronic device, such as a computer or television, with a display with a faceplate. The electronic device operates the display to generate an image that includes an interlaced portion at an inner display surface or location at an internal offset distance from an outer surface of the faceplate. The image display system includes a lens array with lenticules configured to focus through the lens array material, through an air gap, and into the faceplate the internal offset distance rather than simply on the back of the lens array. The display system may also include a mounting mechanism for selectively positioning the lens array relative to the faceplate to adjust the size of the air gap so as to focus the lens array onto the image being displayed within the display device.
Abstract:
A concentration system or solar concentrator for supplying concentrated solar energy. The system includes a lens array with linear lenses focusing light received on an outer surface onto a number of focal point or focused lines of light. The system includes a light wafer with a substantially planar body formed of a thickness of a light transmissive material. The body includes a top surface facing the lens array and receiving the focused light from at least one the linear lens and further includes a bottom surface opposite the top surface. The light wafer includes a ray splitter, in the form of a triangular air gap, paired to each linear lens at or near a focal point of the paired lens to direct the received focused light into the body or towards edges or sides of the body where a solar collector such as a thermal or photovoltaic collector is positioned.
Abstract:
A solar power system for supplying concentrated solar energy. The system includes a cylindrical absorber tube carrying the working fluid and a concentrator assembly, which includes an array of linear lenses such as Fresnel lenses. The concentrator assembly includes a planar optical wafer paired with each of the linear lenses to direct light, which the lenses focus on a first edge of the wafers, onto the collector via a second or output edge of the wafers. Each of the optical wafers is formed from a light transmissive material and acts as a light “pipe.” The lens array is spaced apart a distance from the first edges of the optical wafers. This distance or lens array height is periodically adjusted to account for seasonal changes in the Sun's position, such that the focal point of each linear lens remains upon the first edge of one of the optical wafers yearlong.
Abstract:
A computer-implemented method is provided for optimizing configuration of absorption enhancement structures for use in a photovoltaic enhancement film that is applied onto a PV device to improve absorption. The method includes receiving optimization run input defining a PV enhancement film including defining absorption enhancement structures with differing configurations. The method includes modeling a PV device including PV material such as a silicon thin film. A first ray tracing is performed over a range of incidence angles for the PV device. The method includes determining a set of base path angles for the PV material layer based on this first ray tracing. A second ray tracing is performed for the PV device with the enhancement film, which has absorption enhancement structures. Enhanced path lengths are determined based on the second ray tracking, and path length ratios are determined by comparing the enhanced path lengths to the base path lengths.