摘要:
A silicon substrate is used as the substrate, on which a conical projection is formed as a cathode. A gate electrode is arranged via an insulating film formed on the substrate. The gate electrode is formed so as to enclose and encircle the cathode while the pointed portion of the cathode and the surface of the gate electrode are coated with two layered coating films.
摘要:
Featured is an image forming device for driving field emission electron sources capable of low-vacuum operation, high in ion impact resistance, and controlled in orientation, under X-Y addressing through electrode lines of simple and low-cost configuration. The image forming device includes cathode electrode lines and gate electrode lines of wire structure, where the field emission electron sources are selectively grown on the cathode electrode lines. A vacuum gap is provided between a supporting substrate on the back-plate side and the cathode electrode lines, and a getter is arranged on the supporting substrate.
摘要:
A cold-cathode electron source having an improved utilization efficiency of an electron beam and a simple structure. The cold-cathode electron source comprises a gate electrode (4) provided on a substrate (2) through an insulating layer (3) and an emitter (6) extending through the insulating layer (3) and the gate electrode (4) and disposed in an opening of the gate. During the emission of electrons from the emitter (6), the following relationships are satisfied: 10 [V/μm]≧(Va−Vg)/(Ha−Hg)≧Vg/Hg; and Vg/Hg [V/μm]≧Va×10−4×(9.7−1.3×1n(Hg))×(1000/Ha)0.5, where Ha [μm] is an anode-emitter distance, Va [V] is an anode-emitter voltage, Hg [μm] is a gate-emitter distance, and Vg [V] is a gate-emitter voltage.
摘要:
A cathode is formed on a glass substrate by depositing nickel thereon, and silicon dioxide is allowed to accumulate on the cathode by sputtering to form an insulator film. Then, a gate electrode is provided on the insulator film by depositing nickel thereon. A hole is formed on the glass substrate by lithography to carry out patterning, and the gate electrode and the insulator film are selectively etched to create a hole for the formation of an emitter emitting electrons. Furthermore, nickel is stacked into the hole by deposition to form the emitter, and subsequently the emitter is covered with sulfur as a high vapor-pressure substance to form a high vapor-pressure substance layer.