摘要:
A fiber optic spatial light modulation system which includes a light source which produces source light, an optical fiber bundle which includes a plurality of individual optical fibers, and a spatial light modulator which is interposed between the light source and the optical fiber bundle, and which selectively modulates the amount of the source light coupled into each of the individual optical fibers, wherein the amount of the source light coupled into different ones of the individual optical fibers can be unequal. In the disclosed embodiment, the spatial light modulator is a digital micromirror device which includes an array of micromirrors, a semiconductor memory which includes an array of memory cells, wherein each of the memory cells is associated with a respective one of the micromirrors and stores a bit of binary data, and the system employs a digital microprocessor which executes a desired control algorithm and sends the binary data to appropriate ones of the memory cells to selectively drive the micromirrors into an on position or an off position in accordance with the binary value of the binary data. Each of the individual optical fibers has associated therewith a plurality of micromirrors which are each oriented to couple the source light into the corresponding individual optical fiber when in the on position and to not couple the source light into the corresponding individual optical fiber when in the off position.
摘要:
A system is provided for removing material from a structure having at least one layer of the material formed on a substrate. The system includes a radiant energy source, such as a flashlamp, with an actively cooled reflector for irradiating a target area of a structure with radiant energy, preferably sufficiently intense in at least the visible and ultraviolet, to break or weaken chemical bonds in the material, and an abrasive blaster for impinging the material after irradiation with a cool particle stream, preferably including of CO.sub.2 particles, to remove the irradiated material and cool the substrate. The system may also include light sensors used in a feedback loop to control the removal process by varying the speed at which the radiant energy source is moved along the structure, the repetition rate of the source, the intensity of the source, the pulse width of the source and/or the distance between the source and the structure.
摘要:
An improved system and method are provided for removing material coatings or contaminants such as paints from a structure. The system and method include a radiant energy source, such as a flashlamp, for irradiating the target area of the structure with the radiant energy sufficient to initiate the pyrolysis and/or ablation of the coating or contaminant and a low temperature carbon dioxide stream which is directed at the target area to disperse the material from the structure, clean the exposed surface and cool the underlying substrate. The low temperature carbon dioxide stream is formed from a liquid carbon dioxide from a liquid carbon dioxide source which undergoes phase transition to yield a predetermined amount of low temperature carbon dioxide gas and carbon dioxide snow. The system and method eliminate the need for a carbon dioxide pelletizer, a carbon dioxide pellet transport hopper, and a compressed carrier gas which are used in related systems.