摘要:
A plasma display panel having improved exhaust efficiency is disclosed. A plasma display panel according to a first embodiment of the invention includes first and second substrates opposing each other; barrier ribs that are located in a space between the first substrate and the second substrate for dividing a plurality of discharge cells in sealed spaces; display electrodes located along the discharge cells; and address electrodes formed in a direction intersecting the display electrodes. The barrier ribs include first barrier ribs having a first height and second barrier ribs having a second height so that the difference in height between the two ribs is provided.
摘要:
A plasma display panel may include a first substrate and a second substrate arranged opposing each other, band-shaped first and second electrodes disposed between the first and second substrates and third electrodes disposed between the first and second substrates while extending in a first direction. Barrier ribs may be disposed between the first and second substrates. The barrier ribs may be spaced apart from each other in a second direction intersecting the first direction to define column spaces that extend in the first direction, the column spaces having wider portions and narrower portions alternately, the wider portions corresponding to discharge spaces. The first and second electrodes may cross the barrier ribs and protrude inside the discharge spaces such that the first and second electrodes form discharge gaps in each discharge space.
摘要:
A plasma display panel includes first and second substrates spaced apart from each other, barrier ribs partitioning the space between the first and second substrates into a plurality of discharge cells, at least one first electrode extending in a first direction, and at least one second electrode extending in a second direction crossing the first direction, wherein the second electrode includes a principal electrode and an auxiliary electrode intersecting the principal electrode.
摘要:
A plasma display panel. A first substrate and a second substrate are provided at a predetermined distance from the first substrate and form a vacuum assembly with the first substrate. Barrier ribs form pixels between the first substrate and the second substrate such that subpixels forming one grouping of pixels are arranged in a triangular configuration. A plurality of address electrodes is formed on a surface of the first substrate facing the second substrate and along a first direction of the first substrate. A plurality of discharge sustain electrodes is formed on a surface of the second substrate facing the first substrate and along a first direction of the second substrate. A phosphor layer and a discharge gas are provided between the first substrate and the second substrate. If a length of a line passing through a center of the subpixels and interconnecting two opposing corners of the subpixels is (c), and if a length of a line extending between two adjacent corners is (b), the subpixels are formed such that a (b) to (c) ratio is between 1:1.5 and 1:5.
摘要:
A PDP driving method that reduces the reset voltage of the PDP driving waveforms to make it possible to use low-voltage elements and to achieve high contrasts is disclosed. Since conventional PDP waveforms require very high reset voltages, it causes a problem of intense background light emissions, low contrasts, use of high-voltage components, and increased circuit costs. According to the driving waveforms of the present invention, relative voltage differences between the address electrode and the X electrode and between the X electrode and the Y electrode are considered to design waveforms of low reset voltages, thereby providing high contrasts and low-cost circuit.
摘要:
A PDP driving method that reduces the reset voltage of the PDP driving waveforms to make it possible to use low-voltage elements and to achieve high contrasts is disclosed. Since conventional PDP waveforms require very high reset voltages, it causes a problem of intense background light emissions, low contrasts, use of high-voltage components, and increased circuit costs. According to the driving waveforms of the present invention, relative voltage differences between the address electrode and the X electrode and between the X electrode and the Y electrode are considered to design waveforms of low reset voltages, thereby providing high contrasts and low-cost circuit.
摘要:
A plasma display apparatus includes: a panel on which images are displayed; a circuit board for driving the panel; a chassis base for supporting the panel and the circuit board; a case for accommodating the panel, the circuit board and the chassis base; a signal transfer unit, on which at least one device is mounted, for transmitting electrical signals between the panel and the circuit board by connecting the panel to the circuit board; and a porous protection plate having a plurality of pores, and disposed on an outer surface of the signal transfer unit. In accordance with a further feature of the invention, the case includes a front cabinet disposed in front of the panel, and a porous back cover having a plurality of pores, said porous back cover being disposed on a rear surface of the circuit board and being coupled to the front cabinet.
摘要:
A plasma display panel includes a first substrate and a second substrate, the first substrate and the second substrate being provided with a predetermined gap therebetween. Barrier ribs are formed in a non-striped pattern between the first substrate and the second substrate, the barrier ribs defining a plurality of discharge spaces. A plurality of address electrodes are formed on the first substrate along a direction (y), the address electrodes being formed within and outside discharge spaces. A plurality of sustain electrodes are formed on the second substrate along a direction (x), the sustain electrodes being formed within and outside discharge spaces. The address electrodes include large electrode portions provided within discharge spaces and small electrode portions provided outside the discharge spaces. If a width of large electrode portions is AW, a width of small electrode portions is Aw, and a distance between barrier ribs along direction (x) is D, AW is larger than Aw, and AW is 40-75% of D.
摘要:
A plasma display panel including address electrodes extending in a first direction, and scanning and sustain electrodes extending in a second direction, the electrodes corresponding to discharge cells. Each of the scanning and sustain electrodes includes a transparent electrode that extends toward the other of the scanning and sustain electrode, and over the discharge cell; a main bus electrode positioned adjacent to and parallel with a barrier rib member; and a sub-bus electrode disposed between the main bus electrode and the other of the scanning and sustain electrode. Some embodiments also include an intermediate electrode disposed between the scanning and sustain electrodes. Embodiments of the disclosed plasma display panel exhibit a reduced voltage drop over the transparent electrodes of the sustain electrodes and scanning electrodes, thereby permitting the generation of a sustain discharge at a lower voltage, and a reduced time for generating an address discharge light.
摘要:
A scan electrode drive of an apparatus for driving a plasma display panel includes a switching output circuit, a reset/sustain circuit, an upper scan circuit, a lower scan circuit, a first switching circuit, and a second switching circuit. The switching output circuit includes upper transistors, lower transistors each paired with corresponding upper transistor, and common output lines of the respective upper and lower transistor pairs, and the common output lines are connected to the scan electrode lines, respectively. The reset/sustain circuit outputs the driving signals during the reset period and the display-sustain period. The first switching circuit connects or disconnects the upper common power line of all of the upper transistors of the switching output circuit to or from an output terminal of the reset/sustain circuit. The second switching circuit connects or disconnects the lower common power line of all of the lower transistors of the switching output circuit to or from the output terminal of the reset/sustain circuit.