Abstract:
An optical fiber (1) includes (i) an inner core (111) whose refractive index distribution has an a profile, (ii) an outer core (112) which surrounds the inner core (111), and (iii) a clad (12) which surrounds the outer core (112). In the optical fiber (1), Rd is set to not less than 0.15, where Rd is a ratio of a refractive index difference between the outer core (112) and the clad (12) to a refractive index difference between a center part of the inner core (111) and the clad (12).
Abstract:
A swallowing diagnosis apparatus includes a controller which enables a first swallowing determination process of determining whether or not there is an aspiration risk in the swallowing on the basis of respiratory phases before and after a period in which swallowing has been estimated as having occurred; and a second swallowing determination process of extracting reference information including at least one of the sound information and the respiration information in a predetermined period including the period in which swallowing has been estimated as having occurred, obtaining a feature quantity from the extracted reference information, and performing a machine learning process on the obtained feature quantity to determine whether or not there is a possibility of dysphagia in the swallowing; and a display control process of causing a determination result obtained by the first swallowing determination process and a determination result obtained by the second swallowing determination process to be displayed.
Abstract:
To provide a novel boron-containing compound. A compound represented by the following formula: wherein black circle represents B, white circles represent B—H; —R1 represents —(CH2)n-X1—R3 (n represents an integer of 0 to 6; X1 represents O, S, NH, S—S, O—CO, NHCO or SCO, or does not exist; R3 represents C6-C20 alkyl, hydroxy C6-C20 alkyl, amino C6-C20 alkyl, azido C6-C20 alkyl, hydroxycarbonyl C6-C20 alkyl, or the like), or a group having a repeating sequence of —(CH2)2—O— 3 times or more and 10 times or less and having a methyl group or an ethyl group at the end on the oxygen atom side; and —R2 is —(CH2)m-X2—R4 (m represents an integer from 0 to 8; X2 represents O, S, NH, S—S, O—CO, NHCO or SCO, or does not exist; and R4 represents a tumor recognition moiety), or does not exist are prepared and used.
Abstract:
The purpose of the present invention is to collect a plurality of microscopic objects dispersed in a liquid by light irradiation, and also trap them. A collecting device for bacteria collects a plurality of bacteria dispersed in a sample liquid. The collecting device is provided with a laser beam source that emits laser beam and a honeycomb polymer film constituted so as to be able to hold the liquid. Walls prescribing pores for trapping the plurality of bacteria dispersed in the liquid are formed on the honeycomb polymer film, and also a thin film that includes a material for converting light from the laser beam source to heat is formed on the honeycomb polymer film. The thin film heats the liquid of the sample through the conversion of the laser beam from the laser beam source to heat, thereby causing a convection in the liquid.
Abstract:
A seedling-cutting apparatus includes a pair of arms that is to nip a portion of a stem of a seedling for grafting and that can be opened and closed and a blade that is provided so as to be capable of reciprocating relative to the portion of the stem. At least one of the pair of arms includes a through hole or a cutout that penetrates a portion of the arms along a direction in which the blade reciprocates. At least a portion of the through hole or the cutout faces the portion of the stem and at least a portion of the blade moves through the through hole or the cutout.
Abstract:
There is provided a Ni-based intermetallic alloy having a dual multi-phase microstructure containing a primary precipitate L12 phase and an (L12+D022) eutectoid microstructure. Thus, the Ni-based intermetallic alloy contains Ni, Al, and V as basic elements, and the contents of Ni, Al, and V are controlled to form the dual multi-phase microstructure. The Ni-based intermetallic alloy further contains at least one of Zr and Hf in addition to the basic elements.
Abstract:
Computers are that include interfaces configured to acquire data indicating a pulse or heartbeat of an animal, and processors configured to determine whether a prescribed condition is satisfied or not based on the data indicating the pulse or the heartbeat of the animal, and calculate a respiratory rate in a period of time for which the prescribed condition is satisfied, are provided.
Abstract:
The present invention provides a cell culture vessel or a sample cell for observation use that makes it possible to observe three-dimensionally-cultured cells from various angles. The cell culture vessel or the sample cell for observation use according to the present invention is characterized by being equipped with a culture gel in which a cell or cell tissue is embedded and a first vessel which encloses the culture gel, wherein a space in the first vessel is filled with the culture gel; and the first vessel has a light-permeable window made from a hydrogel.
Abstract:
A catalyst for an oxygen evolution reaction has a higher and longer-life catalytic activity than that of the conventional and expensive noble metal oxide catalysts, such as RuO2 and IrO2. An A-site ordered perovskite oxide catalyst (such as CaCu3Fe4O12 and CaMn3Mn4O12 etc.) as an oxygen evolution reaction catalyst is excellent in cost effectiveness. The catalyst has a high catalytic activity compared with a noble metal oxide catalyst, and a long repetition use life since it is extremely stable also under the oxidative reaction conditions. Use of the catalyst is expected to the important energy conversion reactions such as a charge reaction of a metal-air battery, an anode oxygen evolution reaction in the case of a direct water decomposition reaction by sunlight, etc.
Abstract:
18F-labeled 4-boronophenylalanine (BPA) can be produced by preparing and further processing a precursor of 18F-labeled BPA represented by the following formula: in which R1 represents a bromo group, an iodo group, a fluoro group, a diazaborinane derivative, BX3− or BX3−M+ (wherein X represents a halogen atom; and M+ represents a monovalent monoatomic cation, a polyatomic cation or a complex cation).