Abstract:
A process for the production of a multi-layer coating, wherein a primer layer which is electrically conductive in the at least partially cured state is applied by electrodeposition from an electrodeposition coating agent (I) to an electrically conductive three-dimensional object, at least partially cured exclusively by the action of near infra-red radiation substantially only on the surfaces of the object exposed to the radiation, and an additional coating layer is applied by electrodeposition from an electrodeposition coating agent (II) which is different from electrodeposition coating agent (I), and then this additional coating layer as well as completely uncured or incompletely cured area parts of the primer layer produced from electrodeposition coating agent (I) are cured.
Abstract:
Improved aqueous powder coat dispersion, comprising (a) a powder coating dispersed in (b) an aqueous phase, wherein the aqueous phase contains a silica compound selected from the group consisting of (i) 0.2 to 2% by weight, based on the weight of the powder coating, of finely divided silicic acid with large BET-surface; (ii) 0.1 to 1.5% by weight, based on the weight of the powder coating, of layered silicates; and (iii) combinations thereof, exhibit improved sedimentation properties and provide coatings with improved sag characteristics.
Abstract:
A process for the production of a coating layer from a thermally curable coating composition on a substrate, comprising the successive steps: a) providing a substrate to be coated, b) applying a backing foil coated on one side with an uncured or at least only partially cured coating layer of a thermally curable coating composition, with its coated side on the entire surface or at least one sub-zone of the surface of the substrate, c) supplying thermal energy onto the entire coating applied in step b), and d) removing the backing foil from the coating which remains on the substrate; wherein the supply of thermal energy onto the coating proceeds prior to and/or after removal of the backing foil.
Abstract:
The invention is directed to a process for coating substrates by applying at least one coating composition to an optionally precoated substrate and then curing the coating layer(s) thus obtained, wherein at least one of the coating layers is produced from a coating composition which contains a binder system having olefinic double bonds capable of free-radical polymerization and having reactive functional groups within the meaning of addition and/or condensation reactions, the resin solids of the coating composition having a C═C-equivalent weight from 300 to 10,000, preferably from 300 to 8,000, and curing of this (these) coating layer(s) is carried out by irradiation with NIR radiation in the wave length range 760-1500 nm.