Abstract:
The present invention is directed to a process for the removal of aromatic hydrocarbons from a lean acid gas containing less than 20 mol. % of H2S, comprising:a) contacting the lean acid gas stream (1) with a H2S-selective liquid absorbent solution (29) in a first absorption zone (2) to produce a gas stream depleted in H2S (3) and an absorbent solution enriched in H2S (4),b) introducing the absorbent solution (4) into a non-thermic stripping zone (8) where it is contacted with a stripping gas stream (7) to obtain an absorbent solution depleted in C4+ aliphatic and aromatic hydrocarbons (9) and a stripping gas stream enriched in aromatic and C4+ aliphatic hydrocarbons (10),c) contacting the stripping gas stream (10) obtained in step b) with a H2S-selective liquid absorbent solution (28) in a second absorption zone (12) to obtain a stripping gas stream depleted in H2S (13), and an absorbent solution enriched in H2S (14)d) introducing the absorbent solution (9) obtained in step b) into a desorption zone (16) wherein the H2S-selective liquid absorbent solution (17) is recovered and a lean acid gas is produced.
Abstract:
The present invention relates to a liquid-gas contacting unit comprising a column, at least a lower packed bed and a higher packed bed positioned higher than the lower packed bed inside the column, a gas-tight liquid collecting and redistributing device disposed between the lower and the higher packed bed inside the column and an external pipe outside the column, the external pipe comprising an inlet end, an outlet end and a peripheral wall between the inlet end and the outlet end; the inlet end being positioned between the lower pack bed and the gas-tight liquid collecting and redistributing device and the outlet end being positioned between the higher pack bed and the gas-tight liquid collecting and redistributing device. The present invention also relates to a method for improving the efficiency of a liquid-gas contacting unit.
Abstract:
The present invention relates to a column for exchanging heat and/or material between a gas and a liquid. The column comprises at least one collector tray (1), at least one packed bed, and mixing means for a gas flow (7, 8). According to the invention, the mixing means for a gas flow are arranged below the collector tray (1) and above the packing.
Abstract:
A process for removing sulfur from a gas containing sulfur compounds as H2S, SO2, COS, CS2 . . . , in a quantity of up to 15% wt; particularly gases emanating from the Claus process: A first hydrogenation of the sulfur compounds into H2S, the hydrogenation gas being used to regenerate a deactivated bed of oxidation catalyst, both being carried out at 200-500° C. After sulfur removal, the resulting gas undergoes a second hydrogenation step and then a direct oxidation step, said step being operated under the dew point of sulfur to trap the formed sulfur in the catalyst. In the further cycle, the gas streams are switched so as to regenerate the catalyst in run which is deactivated.
Abstract:
The invention concerns a flexible process for purifying a solvent which inhibits the formation of hydrates during gas processing, in particular monoethylene glycol (MEG), said solvent having a boiling point which is higher than that of water and, at least at one point in time, being mixed with water and salts, the process operating in a different manner with the same facility as a function of the quantity of salts in the MEG to be treated.The process operates in accordance with a phase known as reclaiming (separation of salts under vacuum followed by vacuum distillation) when the salts content exceeds the precipitation threshold and if not, the process operates in a regeneration phase (absence of separation of salts and no operation under vacuum).Advantageously, the change is made under the control of means for testing the salts.