Abstract:
The invention relates generally to gas turbine engines used for electrical power generation. More specifically, embodiments of the present invention provide systems and ways for improving the life and reducing start-up time necessary for bringing gas turbine engines online and up to full power.
Abstract:
The present invention discloses a novel apparatus and methods for controlling an air injection system for augmenting the power of a gas turbine engine, improving gas turbine engine operation, and reducing the response time necessary to meet changing demands of a power plant. Improvements in control of the air injection system include ways directed towards preheating the air injection system, including using an gas turbine components, such as an inlet bleed heat system to aid in the preheating process.
Abstract:
The present invention discloses a novel apparatus and methods for providing a flow of cooling air to one or more turbine nozzles or turbine blade outer air seals. The flow of cooling air is provided by an external source and regulated in order to improve turbine nozzle and air seal cooling efficiency and component life.
Abstract:
Gas turbine power plants augmented with an air injection system for hot air injection to augment power and are used to drive sensitive cogeneration processes are fitted with compressed air storage capability to more smoothly ramp on air injection in the event of sudden and unexpected interruption of the air injection system. Utilizing stored hot air injection prior to starting an air injection system significantly reduces the start-up time of the air injection system.
Abstract:
The present invention discloses a novel apparatus and methods for augmenting the power of a gas turbine engine, improving gas turbine engine operation, and reducing the response time necessary to meet changing demands of a power plant. Improvements in power augmentation and engine operation include systems and methods for preheating a steam injection system.
Abstract:
Electrical power systems, including generating capacity of a gas turbine, where additional power is generated from an air expander and gas turbine simultaneously from a stored compressed air and thermal system.
Abstract:
The present invention discloses a novel apparatus and methods for augmenting the power of a gas turbine engine, improving gas turbine engine operation, and reducing the response time necessary to meet changing demands of a power plant. Improvements in power augmentation and engine operation include additional heated compressed air injection from a power augmentation system and a motor-generator in selective operation with the power augmentation system.
Abstract:
The present invention discloses a novel apparatus and methods for augmenting the power of a gas turbine engine, improving gas turbine engine operation, and reducing the response time necessary to meet changing demands of a power plant. Improvements in power augmentation and engine operation include additional heated compressed air injection, steam injection, water recovery, exhaust tempering, fuel heating, and stored heated air injection.
Abstract:
The present invention discloses a novel apparatus and methods for augmenting the power of a gas turbine engine, improving gas turbine engine operation, and reducing the response time necessary to meet changing demands of a power plant. Improvements in power augmentation and engine operation include additional heated compressed air injection from a power augmentation system and a motor-generator in selective operation with the power augmentation system.
Abstract:
The invention relates generally to electrical power systems, including generating capacity of a gas turbine, and more specifically to pressurized air injection that is useful for providing additional electrical power during periods of peak electrical power demand from a gas turbine system power plant, as well as to inlet heating to allow increased engine turn down during periods of reduced electrical demand.