Abstract:
The described aspects include a user equipment (UE) apparatus, network apparatus, and corresponding methods of using fallback resources for communication. The UE can indicate fallback information to a network apparatus specifying whether fallback resources are preferred for communicating uplink data and can receive a fallback decision from the network apparatus specifying whether fallback resources are to be used for communicating the uplink data. The UE can then determine whether to communicate the uplink data to the network apparatus based in part on the fallback decision. The network apparatus can receive a preamble from a UE related to requesting access for transmitting uplink data and can determine a fallback decision specifying whether the UE is to utilize fallback resources in communicating the uplink data. The network apparatus then communicates the fallback decision to the UE.
Abstract:
Systems and methodologies are described that facilitate power distribution and data allocation in a multi-carrier wireless communication system. A portion of transmit power can be pre-allocated to an anchor carrier to support non-scheduled data flows. Remaining power is split among all carriers, including the anchor carrier, after pre-allocation. Data from one or more flows, scheduled and non-scheduled, are allocated to the carriers in accordance with priorities associated with the one or more flows. Allocation of data can be performed sequentially starting with a non-anchor carrier. In addition, non-scheduled data flows can be restricted to the anchor carrier.
Abstract:
An apparatus and a method are disclosed for jointly selecting precoding matrices for a plurality of received transmissions, such as those that might be received from a primary serving cell and a secondary serving cell in a multi-flow radio access network wherein each of the serving cells is configured to provide a MIMO transmission. Here, by jointly selecting the precoding matrices, interference from each of the downlink transmissions upon the other transmission can be reduced, thus improving overall performance at the receiving entity.
Abstract:
Apparatus and methods are described for initiating an operating a high speed uplink channel. A user equipment may receive an order from a Node B triggering a feedback response. The user equipment may perform a physical random access channel (PRACH) procedure in response to receiving the order, and may also initiate a collision resolution procedure The user equipment may transmit a current channel quality indicator (CQI) of the user equipment on a high speed dedicated physical control channel (HS-DPCCH) prior to achieving collision resolution.
Abstract:
In aspects of the present disclosure, a user equipment receives inter-NodeB multi-point transmissions, and a multipoint aggregation component detects a gap in the sequence numbers, delays transmitting a not acknowledged signal (NAK) by starting a NAK delay timer, and transmits, by a transceiver, NAK for the gap in sequence numbers in response to the NAK delay timer expiring and detecting that the gap has not been filled during the delaying. If the Medium Access Control (MAC) entity as the respective NodeB identifies itself to the Radio Link Control (RLC), out-of-order delivery (skew) can eventually be distinguished from genuine data loss before the NAK delay timer expires based upon tracking the highest sequence numbers received. Adaptive NAK delay timer can be performed by monitoring skew duration.
Abstract:
Methods and apparatuses are provided for access control in a wireless communication system. In particular, certain parameters utilized by access terminals for a random access procedure may be partitioned, such that different classes of access terminals may be controlled independent of other classes. Here, an exclusive set of access classes may be utilized by low-priority machine type communication devices, such that the broadcasting of a bit mask corresponding to the access classes can bar some or all of the low-priority devices. Further, a new access service class may be utilized exclusively by the low-priority devices, wherein the signature space utilized for random access attempts can be partitioned between the new access service class and all other access service classes.
Abstract:
A random access procedure for UEs in Cell_FACH or another suitable non-DCH state, which enables concurrent deployment of 2 ms and 10 ms TTIs for uplink transmissions on the E-DCH. In some examples, the procedure may further enable utilization of a Rel-99 PRACH transmission by UEs in the Cell_FACH or other suitable non-DCH state.
Abstract:
An apparatus and method for controlling idle mode radio measurements comprising: determining if a radio measurement is less than a radio threshold; determining a time duration in which the radio measurement is less than the radio threshold; determining if the time duration is greater than a time measurement threshold; and obtaining at least one other radio measurement from at least one base station which is not a serving cell.
Abstract:
In a communication system, user equipment (UE) conditionally performs uplink transmit diversity (ULTD) either by Switched Antenna Transmit Diversity (SATD) or Beamforming Transmit Diversity (BFTD) using a first antenna and a second antenna. Either a serving node or the UE determines that uplink transmit diversity is conditionally authorized. Either a serving node or the UE measures a value. The UE transmits using ULTD in response to determining that an enabling condition based on the value is satisfied. The UE can also disable uplink transmit diversity in response to determining that a disabling condition based on the value is satisfied. The disabling condition comprises a disabling threshold that equals the enabling condition comprising an enabling threshold with a threshold adjustment for hysteresis.
Abstract:
Methods and systems to enhance local repair in robust header compression (RoHC) decompressors (110, 114), which may improve network transmission efficiency and quality. One method uses lower layer information to enhance local repair at the decompressor (110, 114). Another method uses a user datagram protocol (UDP) checksum to enhance local repair at the decompressor (110, 114).