摘要:
A random access procedure for UEs in Cell_FACH or another suitable non-DCH state, which enables concurrent deployment of 2 ms and 10 ms TTIs for uplink transmissions on the E-DCH. In some examples, the procedure may further enable utilization of a Rel-99 PRACH transmission by UEs in the Cell_FACH or other suitable non-DCH state.
摘要:
In a communication system, user equipment (UE) conditionally performs uplink transmit diversity (ULTD) either by Switched Antenna Transmit Diversity (SATD) or Beamforming Transmit Diversity (BFTD) using a first antenna and a second antenna. Either a serving node or the UE determines that uplink transmit diversity is conditionally authorized. Either a serving node or the UE measures a value. The UE transmits using ULTD in response to determining that an enabling condition based on the value is satisfied. The UE can also disable uplink transmit diversity in response to determining that a disabling condition based on the value is satisfied. The disabling condition comprises a disabling threshold that equals the enabling condition comprising an enabling threshold with a threshold adjustment for hysteresis.
摘要:
Apparatus and methods are described for initiating an operating a high speed uplink channel. A user equipment may receive an order from a Node B triggering a feedback response. The user equipment may perform a physical random access channel (PRACH) procedure in response to receiving the order, and may also initiate a collision resolution procedure The user equipment may transmit a current channel quality indicator (CQI) of the user equipment on a high speed dedicated physical control channel (HS-DPCCH) prior to achieving collision resolution.
摘要:
Techniques for scheduling data transmission on multiple carriers in a wireless communication system are described. In one design, a scheduler may receive requested power headrooms for multiple carriers from a user equipment (UE), one requested power headroom for each carrier. Each requested power headroom may be indicative of transmit power usable by the UE for transmission on an associated carrier. The scheduler may also receive queue information indicative of data to transmit by the UE. The scheduler may redistribute the requested power headrooms across the multiple carriers (e.g., based on water filling or greedy filling) to obtain redistributed power headrooms for the multiple carriers. The scheduler may schedule the UE for data transmission on the uplink based on the redistributed power headrooms and the queue information. The scheduler may obtain and send at least one granted power headroom for at least one carrier to the UE.
摘要:
The described aspects include a user equipment (UE) apparatus, network apparatus, and corresponding methods of using fallback resources for communication. The UE can indicate fallback information to a network apparatus specifying whether fallback resources are preferred for communicating uplink data and can receive a fallback decision from the network apparatus specifying whether fallback resources are to be used for communicating the uplink data. The UE can then determine whether to communicate the uplink data to the network apparatus based in part on the fallback decision. The network apparatus can receive a preamble from a UE related to requesting access for transmitting uplink data and can determine a fallback decision specifying whether the UE is to utilize fallback resources in communicating the uplink data. The network apparatus then communicates the fallback decision to the UE.
摘要:
Systems and methodologies are described that facilitate power distribution and data allocation in a multi-carrier wireless communication system. A portion of transmit power can be pre-allocated to an anchor carrier to support non-scheduled data flows. Remaining power is split among all carriers, including the anchor carrier, after pre-allocation. Data from one or more flows, scheduled and non-scheduled, are allocated to the carriers in accordance with priorities associated with the one or more flows. Allocation of data can be performed sequentially starting with a non-anchor carrier. In addition, non-scheduled data flows can be restricted to the anchor carrier.
摘要:
Apparatus and methods are described for initiating an operating a high speed uplink channel. A user equipment may receive an order from a Node B triggering a feedback response. The user equipment may perform a physical random access channel (PRACH) procedure in response to receiving the order, and may also initiate a collision resolution procedure The user equipment may transmit a current channel quality indicator (CQI) of the user equipment on a high speed dedicated physical control channel (HS-DPCCH) prior to achieving collision resolution.
摘要:
A random access procedure for UEs in Cell_FACH or another suitable non-DCH state, which enables concurrent deployment of 2 ms and 10 ms TTIs for uplink transmissions on the E-DCH. In some examples, the procedure may further enable utilization of a Rel-99 PRACH transmission by UEs in the Cell_FACH or other suitable non-DCH state.
摘要:
In a communication system, user equipment (UE) conditionally performs uplink transmit diversity (ULTD) either by Switched Antenna Transmit Diversity (SATD) or Beamforming Transmit Diversity (BFTD) using a first antenna and a second antenna. Either a serving node or the UE determines that uplink transmit diversity is conditionally authorized. Either a serving node or the UE measures a value. The UE transmits using ULTD in response to determining that an enabling condition based on the value is satisfied. The UE can also disable uplink transmit diversity in response to determining that a disabling condition based on the value is satisfied. The disabling condition comprises a disabling threshold that equals the enabling condition comprising an enabling threshold with a threshold adjustment for hysteresis.
摘要:
Systems and methodologies are described that facilitate split a common total power resource among a plurality of carriers. A power distribution scheme can be employed jointly across the plurality of carriers to determine an amount of power to allocate to respective carriers. Based upon an amount of power allocated, a packet format can be selected for each carrier based upon the amount of power allocated to the carrier and/or a serving grant associated with the carrier.