Abstract:
A carrier for a paint tray is provided, the tray having an inner wall defining a container for containing paint and an outer wall for supporting the container, the inner and outer walls defining a space therebetween accessible from underneath the tray. The carrier comprises a base with a front leg for coupling to the paint tray and a lifting member connected to the base. The front leg may be inserted into the space between said inner and outer wall and can engage the interior faces of both said inner and outer walls simultaneously when inserted into said space to secure the member within the space and to support the tray from the front leg.
Abstract:
A holder for a paint container can be used on uneven surfaces. The holder comprises a support base. Pivotally coupled to the support base is at least one leg and/or a lifting member. The at least one leg is selectively positionable for fixing the angular orientation of the at least one leg relative to the paint container support base. The lifting member may be located to support a paint container across a lateral axis extending substantially above a combined centre of gravity of the holder and the paint container.
Abstract:
A system is disclosed one form of which is an aircraft that includes a pod capable of housing a work providing device. The pod can also include a thermal conditioning system and a power generation device that can be powered from the work providing device. The pod can provide thermal conditioning services and power services to a payload aboard the aircraft. In one non-limiting form the payload is a directed energy member that can be cooled using the thermal conditioning system and powered using the power generation device.
Abstract:
An aircraft having a cooling system is disclosed. The cooling system can be used to cool a heat emitting component. In one form the cooling system is a refrigerant system and includes a relatively high temperature device such as, but not limited to, a condenser. The relatively high temperature component is placed in thermal communication with a passing air flow. In one embodiment the aircraft includes a pod in which at least a portion of the cooling system is disposed. For example, a condenser of a vapor cycle refrigerant system can be located in the pod and in thermal communication with the air flow. The cooling system can also include a device capable of delivering a cooling fluid into the air flow and/or to the relatively high temperature component. The cooling fluid can be evaporated to provided additional cooling.
Abstract:
A thermal system is disclosed in thermal communication with an electrical device. In one form the thermal system is a refrigeration system. The electrical device can be disposed within the refrigeration system such that a working fluid of the refrigeration system exchanges heat with the electrical device. In one embodiment the refrigeration system includes a container in which the electrical device is disposed. The electrical device can be an electrical motor, but other forms are contemplated. The container can be located anywhere in the thermal system. In one non-limiting embodiment the working fluid of the refrigeration system wets a stator of the motor. A partition can be used to separate the stator from the motor to keep the motor free from working fluid.
Abstract:
A thermal system is disclosed in thermal communication with an electrical device. In one form the thermal system is a refrigeration system. The electrical device can be disposed within the refrigeration system such that a working fluid of the refrigeration system exchanges heat with the electrical device. In one embodiment the refrigeration system includes a container in which the electrical device is disposed. The electrical device can be an electrical motor, but other forms are contemplated. The container can be located anywhere in the thermal system. In one non-limiting embodiment the working fluid of the refrigeration system wets a stator of the motor. A partition can be used to separate the stator from the motor to keep the motor free from working fluid.
Abstract:
One embodiment of the present invention is a unique airborne electrical power and thermal management system. Another embodiment is a unique aircraft. Other embodiments include apparatuses, systems, devices, hardware, methods, and combinations for aircraft and electrical power and thermal management systems. Further embodiments, forms, features, aspects, benefits, and advantages of the present application will become apparent from the description and figures provided herewith.
Abstract:
An electrical power generation apparatus is embedded in a contra-rotating propulsion system that includes overlapping first and second shafts operatively connected for counter-rotation about a common axis. The electrical power generation apparatus includes a winding mounted to one of the shafts and a field array mounted to the other of the shafts adjacent to the winding. Relative rotation of the winding and the field array induces electrical current in the winding.
Abstract:
A turbine engine compressor has a rotor including rotating compressor discs. Magnets are positioned on the rotating compressor discs. Electrical coils are positioned in a stationary guide vane internal ring so as to create an electric machine providing starting torque to a rotor, and/or generating electrical energy once the rotor is rotating.
Abstract:
An electrical machine is embedded into the compressor assembly of a gas turbine engine. An electrical system interface module distributes electrical current to and from the embedded electrical machine for starting the gas turbine engine and for operating accessory components. Accordingly, the gas turbine engine and accessory components can be started and operated without a power-takeoff shaftline and without an external accessory gearbox.