Abstract:
A power plant includes a high temperature fuel cell, a volume expansion heat engine producing mechanical energy, and a combustion chamber coupled to receive from said fuel cell at least a portion of unconsumed fuel and apply high pressure combusted gases to the engine. A reformer can feed fuel to said fuel cell. A distributor distributes fuel cell exhaust fuel selectively to the reformer and the combustion chamber and varies the ratio of exhaust fuel fed to the reformer and combustion chamber in accordance with predetermined power desired from said fuel cell and engine.
Abstract:
A method for producing an electrode for an electrochemical element absorbs monomers for polymerization on a surface having a specific surface area of 100 to 3000 m2g−1 and having an average pore diameter in the range of 0.4 to 100 nm, performing electrolysis polymerization by applying pulse voltage, and forming a conductive polymer layer on the surface of the conductive porous material, forming a thin and uniform electrode film. In a method for producing an electrochemical element, a conductive polymer layer is formed on the conductive porous material by absorbing monomers for polymerization on a surface of a conductive porous material having a specific surface area and pore diameter as above forming a electrochemical cell by using the conductive porous material, the monomers are absorbed in the pores, putting the electrochemical cell and the electrolyte solution in an outer casing, and performing electrolysis polymerization of the monomers in the electrolyte solution.
Abstract:
To provide a method for producing an electrode material which is improved in energy density and is excellent in output characteristics. The present invention provides a manufacturing method for the electrode material comprising the steps of: 1) immersing a conductive material having a specific surface area of 200 to 3000 m2g−1 in a complex monomer solution of a transition metal having at least two different oxidation numbers, 2) performing electro polymerization by applying pulse voltage using the conductive material as an electrode to stack the complex monomer under the condition that electrolyzation time is 0.1 to 60 second and a downtime is 10 to 600 second, and 3) forming on the surface of the conductive material an energy accumulating redox polymer layer containing polymer complex compound of transition metal formed by the stacked complex monomer, thereby accumulating energy via a redox reaction: wherein a thin and uniform electrode film is formed, namely the electrode material which is excellent in output characteristics and improves energy density is manufactured according to the method.