Abstract:
A voltage adjusting circuit is provided includes an inducing circuit configured to induce a voltage from electromagnetic waves, a first rectifying circuit configured to rectify an output voltage of the inducing circuit, a control circuit configured to control an output voltage of the first rectifying circuit in response to the output voltage of the first rectifying circuit, and a second rectifying circuit configured to simultaneously rectify and regulate the output voltage of the inducing circuit in response to the output voltage of the first rectifying circuit.
Abstract:
A method of manufacturing a flexible-film primary battery includes forming a first conductive carbon layer on a surface-treated inner surface of a first pouch film to form a positive electrode collector, and forming a positive electrode layer on the first conductive carbon layer to form a positive electrode plate. A second conductive carbon layer is formed on a surface-treated inner surface of a second pouch film to form a negative electrode collector, and a negative electrode layer is formed on the second conductive carbon layer to form a negative electrode plate. An adhesion/post-injection polymer electrolyte layer is inserted between the positive electrode plate and the negative electrode plate to manufacture a battery assembly. An electrolyte is injected into the polymer electrolyte layer of the battery assembly. The battery assembly is sealed completely to form a primary battery.
Abstract:
A contactless card includes an inductive circuit configured to send and receive signals, a rectifier circuit coupled to the inductive circuit and configured to generate a DC voltage from an AC voltage generated by the inductive circuit, a clamp circuit configured to limit the DC voltage, a regulator circuit configured to regulate the DC voltage and a control circuit configured to selectively enable and disable the clamp circuit and the regulator circuit.
Abstract:
Provided are a vacuum-sealing-type flexible-film primary battery and a method of manufacturing the same. The primary battery includes a battery assembly comprising a positive electrode plate including a positive electrode collector having a first conductive carbon layer disposed directly on a surface-treated inner surface of a first pouch and a positive electrode layer disposed on the first conductive carbon layer of the positive electrode collector, a negative electrode plate including a negative electrode collector having a second conductive carbon layer disposed directly on a surface-treated inner surface of a second pouch and a negative electrode layer disposed on the second conductive carbon layer of the negative electrode collector, and an adhesion/post-injection polymer electrolyte layer interposed between the positive electrode plate and the negative electrode plate, wherein the battery assembly is completely sealed. The flexible-film primary battery may employ the pouch as a collector film to improve flexibility. Also, the flexible-film primary battery may be completely sealed using the pouch to improve a retention period and cell performance. Furthermore, the flexible-film primary battery may be manufactured using a screen printing technique, thereby facilitating a roll-to-roll sequential process.
Abstract:
A voltage adjusting circuit is provided includes an inducing circuit configured to induce a voltage from electromagnetic waves, a first rectifying circuit configured to rectify an output voltage of the inducing circuit, a control circuit configured to control an output voltage of the first rectifying circuit in response to the output voltage of the first rectifying circuit, and a second rectifying circuit configured to simultaneously rectify and regulate the output voltage of the inducing circuit in response to the output voltage of the first rectifying circuit.