Abstract:
A lithium rechargeable battery includes a cathode plate having a cathode current collector layer; and a cathode layer composed of particles of a cathode active material; an anode plate that is spaced apart from the cathode plate and having an anode current collector layer and an anode layer composed a mixed anode active material that is a mixture including particles of a spinel lithium titanium oxide (Li4Ti5O12) and nanotubes of a lithium titanium oxide (LixTiO2, where 0
Abstract translation:锂可充电电池包括具有阴极集电器层的阴极板; 以及由正极活性物质的粒子构成的阴极层; 阳极板与阴极板间隔开并具有阳极集电器层和阳极层,阳极层由混合阳极活性材料构成,该混合阳极活性材料是包含尖晶石锂钛氧化物(Li 4 Ti 5 O 12)的颗粒和锂二氧化钛的纳米管的混合物 (LixTiO 2,其中0
Abstract:
Provided are an anode in which lithium metal powder and carbon powder are physically mixed with each other to form a composite and the composite is applied as an anode layer, and a lithium metal secondary battery including the anode. The anode of the present invention may suppress the formation of lithium dendrites and the change in volume of cells generated in a rechargeable battery which uses a lithium metal anode and significantly improve the cycle life-span of a lithium metal secondary battery by physically mixing lithium metal particles and carbon particles having an equivalent average particle diameter with each other to be applied as an anode layer.
Abstract:
Provided are a composite polymer electrolyte for a lithium secondary battery in which a composite polymer matrix multi-layer structure composed of a plurality of polymer matrices with different pore sizes is impregnated with an electrolyte solution, and a method of manufacturing the same. Among the polymer matrices, a microporous polymer matrix with a smaller pore size contains a lithium cationic single-ion conducting inorganic filler, thereby enhancing ionic conductivity, the distribution uniformity of the impregnated electrolyte solution, and maintenance characteristics. The microporous polymer matrix containing the lithium cationic single-ion conducting inorganic filler is coated on a surface of a porous polymer matrix to form the composite polymer matrix multi-layer structure, which is then impregnated with the electrolyte solution, to manufacture the composite polymer electrolyte. The composite polymer electrolyte is used in a unit battery. The composite polymer matrix structure can increase mechanical properties. The introduction of the lithium cationic single-ion conducting inorganic filler can provide excellent ionic conductivity and high rate discharge characteristics.
Abstract:
Provided are a vacuum-sealing-type flexible-film primary battery and a method of manufacturing the same. The primary battery includes a battery assembly comprising a positive electrode plate including a positive electrode collector having a first conductive carbon layer disposed on a surface-treated inner surface of a first pouch and a positive electrode layer disposed on the first conductive carbon layer of the positive electrode collector, a negative electrode plate including a negative electrode collector having a second conductive carbon layer disposed on a surface-treated inner surface of a second pouch and a negative electrode layer disposed on the second conductive carbon layer of the negative electrode collector, and an adhesion/post-injection polymer electrolyte layer interposed between the positive electrode plate and the negative electrode plate, wherein the battery assembly is completely sealed. The flexible-film primary battery may employ the pouch as a collector film to improve flexibility. Also, the flexible-film primary battery may be completely sealed using the pouch to improve a retention period and cell performance. Furthermore, the flexible-film primary battery may be manufactured using a screen printing technique, thereby facilitating a roll-to-roll sequential process.
Abstract:
Disclosed is a polymer electrolyte membrane for a fuel cell, which restrains a crossover phenomenon of fuel and a decomposition of a polymer membrane over platinum, and shows outstanding power output and performance characteristics during operation of the fuel cell, and a method for producing the same. The method comprises the steps of blending a polymer matrix with a fluorinated ionomer of 3 to 50 wt % based on a weight of a polymer to produce a blended polymer solution; casting the blended polymer solution into a polymer membrane; and coating the fluorinated ionomer on both sides of the polymer membrane to produce a composite membrane. The polymer electrolyte membrane has advantages in that the fuel cell using the polymer electrolyte membrane, which has high energy efficiency, can be inexpensively produced, and so the fuel cell can be applied in various applications such as a power source of a nonpolluting car, on-site generation of electricity, an electric power source of a spacecraft, a portable energy source, and an energy source for military purpose.
Abstract:
Provided is a tire structure capable of being combined with a rim, and the tire structure includes an air tube, a core provided on the air tube, and a tire outer layer provided on the core, and the core includes a body part positioned above a transverse diameter of the air tube and a wing part positioned under the transverse diameter of the air tube, and a lower end of the wing part is placed under an upper surface of the rim.
Abstract:
A method of manufacturing a flexible-film primary battery includes forming a first conductive carbon layer directly on a surface-treated inner surface of a first pouch film to form a positive electrode collector, and forming a positive electrode layer on the first conductive carbon layer to form a positive electrode plate. A second conductive carbon layer is formed directly on a surface-treated inner surface of a second pouch film to form a negative electrode collector, and a negative electrode layer is formed on the second conductive carbon layer to form a negative electrode plate. An adhesion/post-injection polymer electrolyte layer is inserted between the positive electrode plate and the negative electrode plate to manufacture a battery assembly. An electrolyte is injected into the polymer electrolyte layer of the battery assembly. The battery assembly is sealed completely to form a primary battery.
Abstract:
Provided are an aqueous electrolyte composition including hydrophilic microparticles and a sealed-type primary film battery including an electrolyte layer formed of the aqueous electrolyte composition. In the sealed-type primary film battery, a separation film is interposed between a positive electrode and a negative electrode, and has a plurality of through-holes. A non-flowable electrolyte layer interposed between the positive electrode and the negative electrode includes first and second electrolyte layers extending parallel to the positive electrode and the negative electrode, and a plurality of third electrolyte layers filled in the through-holes of the separation film so as to be integrally connected to the first electrolyte layer and the second electrolyte layer. Due to the third electrolyte layers filled in the through-holes of the separation film, an ion transfer path in the electrolyte layer is shortened. The hydrophilic microparticles are dispersed in the electrolyte layer so as to prevent moisture evaporation.
Abstract:
Provided is thin film type energy generation-storage device in which an energy generation device generating energy using a piezoelectric material and an energy storage device storing the generated energy are formed in a thin film type one unit.