Abstract:
Disclosed are an electrode active material, having a composition of SnPx (0.9≦x≦0.98), an electrode comprising the same, and a lithium secondary battery comprising the electrode. Also disclosed is a method for preparing an electrode active material having a composition of SnPx (0.9≦x≦0.98), the method comprising the steps of: preparing a mixed solution of a Sn precursor, trioctyl phosphine (TOP) and trioctyl phosphine oxide (TOPO); and heating the solution. The application of the teardrop-shaped single-crystal SnPO-94 particles as an anode active material for lithium secondary batteries can provide an anode having very excellent cycling properties because the active material has a reversible capacity, which is about two times as large as that of a carbon anode, along with a very low irreversible capacity, and it is structurally very stable against Li ion intercalation/deintercalation in a charge/discharge process, indicating little or no change in the volume thereof.
Abstract:
Provided is an electrode mix for a secondary battery containing an electrode active material, comprising a PVA having a degree of polymerization of more than 2500 and a degree of saponification of more than 90% as a binder, and a lithium secondary battery comprising the same. Use of the binder according to the present invention can provide advantageous effects such as improved adhesive strength between the electrode mix and current collector and between the electrode mixes, prevention of the peeling and separation of the active material even after repeated charge/discharge cycles, and inhibition of decreases in the capacity or output power retention rate of the secondary battery.
Abstract:
The present invention relates to a method for improving charge/discharge cycle characteristics of a lithium secondary battery using a Si based anode active material, the method comprising surface-treating a surface of an anode current collector to have specific morphology, and preferably vapor-depositing a silicon film, as the anode active material by sputtering under application of bias voltage to the surface-treated anode current collector, and/or disposing an adhesive layer between the surface-treated anode current collector and silicon film, so as to reinforce bondability between the anode current collector and active material, ultimately leading to improvement of charge/discharge characteristics of the battery.
Abstract:
Embodiments of the present invention are directed to a positive active material, an electrode including the positive active material, and a lithium battery including the electrode. Due to the inclusion of a phosphate compound having an olivine structure and a lithium nickel composite oxide in the positive active material, the positive active material has high electric conductivity and high electrode density. A lithium battery manufactured using the positive active material has high capacity and good high-rate characteristics.
Abstract:
Disclosed is an anode material comprising a metal core layer capable of repetitive lithium intercalation/deintercalation; an amorphous carbon layer coated on the surface of the metal core layer, and a crystalline carbon layer coated on the amorphous carbon layer. The anode material not only maintains a high charge/discharge capacity, which is an advantage of a metal-based anode material, but also inhibits changes in the volume of a metal core layer caused by repetitive lithium intercalation/deintercalation in virtue of an amorphous carbon layer and a crystalline carbon layer, thereby improving the cycle life characteristics of cells.
Abstract:
Disclosed are an electrode active material, having a composition of SnPx (0.9≦x≦0.98), an electrode comprising the same, and a lithium secondary battery comprising the electrode. Also disclosed is a method for preparing an electrode active material having a composition of SnPx (0.9≦x≦0.98), the method comprising the steps of: preparing a mixed solution of a Sn precursor, trioctyl phosphine (TOP) and trioctyl phosphine oxide (TOPO); and heating the solution. The application of the teardrop-shaped single-crystal SnP0-94 particles as an anode active material for lithium secondary batteries can provide an anode having very excellent cycling properties because the active material has a reversible capacity, which is about two times as large as that of a carbon anode, along with a very low irreversible capacity, and it is structurally very stable against Li ion intercalation/deintercalation in a charge/discharge process, indicating little or no change in the volume thereof.
Abstract:
Disclosed is an electrode active material comprising: a core layer capable of repeating lithium intercalation/deintercalation; an amorphous carbon layer; and a crystalline carbon layer, successively, wherein the core layer comprises at least two core particles. A secondary battery comprising the same electrode active material is also disclosed. The electrode active material can inhibit variations in volume of the core layer that may occur during repeated charge/discharge cycles, since the core layer comprising at least two core particles, each core particle having an increased area that is in contact with the carbon layer coated thereon. Therefore, the battery using the electrode active material can provide improved cycle life characteristics.
Abstract:
The present invention relates to a method for improving charge/discharge cycle characteristics of a lithium secondary battery using a Si based anode active material, the method comprising surface-treating a surface of an anode current collector to have specific morphology, and preferably vapor-depositing a silicon film, as the anode active material by sputtering under application of bias voltage to the surface-treated anode current collector, and/or disposing an adhesive layer between the surface-treated anode current collector and silicon film, so as to reinforce bondability between the anode current collector and active material, ultimately leading to improvement of charge/discharge characteristics of the battery.
Abstract:
Provided is a lithium secondary battery having improved discharge characteristics in a range of high-rate discharge while minimizing a dead volume and at the same time, having increased cell capacity via increased electrode density and electrode loading amounts, by inclusion of two or more active materials having different redox levels so as to exert superior discharge characteristics in the range of high-rate discharge via sequential action of cathode active materials in a discharge process, and preferably having different particle diameters.