Abstract:
A migration engine is provided for use in a logical namespace of a storage system environment. A remote agent of an integrated management framework is installed on a host machine of the storage system environment and includes a pre-installed migration plug-in module that configures the agent as a migration engine adapted to provide a data migration capability. That is, the migration plug-in has the intelligence to configure the remote agent as a migration engine adapted to perform data migration from a source location to a destination location in the storage system environment.
Abstract:
Among other things, methods, systems and apparatus are described for implementing nanomotor-based micro- and nanofabrication. In one aspect, a method of fabricating nanoobjects comprises functionalizing a nanomotor with a reagent. The method also includes controlling a movement of the functionalized nanomotor in a solution containing material to react with the reagent to induce a localized deposition or precipitation of a product onto a surface of a substrate or etching of the substrate.
Abstract:
A system and method administers security in a logical namespace of a storage system environment. A remote agent performs an integral security-related role within a management framework that is directed to off-loading administration of privileges from a namespace and storage management (NSM) server for namespace and storage management. NSM server rights are defined and assigned to a user of the NSM server in accordance with a security administration feature of the management framework. In addition, a multi-stage authentication procedure is provided to ensure that a user has the appropriate rights to perform operations on the NSM server.
Abstract:
A network configuration device or entity has control of defined management and security functions in the network, or in many embodiments, in a Fiber Channel fabric. The network configuration device may control many functions. Foremost, it may control the recognition, operation and succession procedure for network configuration entities. It may also control user configurable options for the network, rules for interaction between other entities in the network, rules governing management-level access to the network, and rules governing management-level access to individual devices in the network. In addition, the network configuration entity may exploit policy sets to implement its control.
Abstract:
The snapshot capability moving into the SAN fabric and being provided as a snapshot service. A well-known address is utilized to receive snapshot commands. Each switch in the fabric connected to a host contains a front end or service interface to receive the snapshot command. Each switch of the fabric connected to a storage device used in the snapshot process contains a write interceptor module which cooperates with hardware in the switch to capture any write operations which would occur to the snapshot data area. The write interceptor then holds these particular write operations until the original blocks are transferred to a snapshot or separate area so that the original read data is maintained. Should a read operation occur to the snapshot device and the original data from requested location has been relocated, a snapshot server captures these commands and redirects the read operation to occur from the snapshot area. If, however, the read operation is directed to the original drive, the read is provided from the original data areas, even if the data had been replaced. The snapshot server determines the existence of particular snapshot devices, allocates their storage locations, provides this information to both the service interfaces and the write interceptors and handles read and write operations to the snapshot device.