Abstract:
Disclosed is a continuous process for manufacturing aliphatic polycarbonate by polymerizing carbon dioxide and one or more epoxide compound in the presence of catalyst, in which carbon dioxide, one or more epoxide compound, and the catalyst are continuously supplied to polymerization reactor to produce aliphatic polycarbonate, separate unreacted carbon dioxide and epoxide compound and recycle them as raw materials.
Abstract:
This invention relates to a method of preparing poly(alkylene carbonate) that has a molecular weight and polymer chain structure precisely controlled by adding a chain transfer agent composed of a compound having an alcohol or carboxylic acid functional group upon alternating copolymerization of an epoxide compound and carbon dioxide using a catalyst composed of a trivalent metal complex compound synthesized from a quaternary ammonium salt-containing Salen type ligand, and to a polymer compound prepared thereby. According to this invention, the polymer compound having a star-shaped chain as well as the polymer having a linear chain can be prepared. The low-molecular-weight poly(alkylene carbonate) has an —OH terminal group and can be used alone as a coating agent, etc., and also in mixtures with an isocyanate compound and thus can be easily utilized to prepare polyurethane.
Abstract:
Provided is preparation of poly(alkylene carbonate) by alternating copolymerization of carbon dioxide and epoxide. To be specific, provided are a method for preparing block or graft copolymers of the polymer compound and poly(alkylene carbonate) by alternating-copolymerization of an epoxide compound and carbon dioxide by using a metal (III) compound prepared from salen-type ligand with a quaternary ammonium salt as a catalyst in the presence of a polymer compound having a functional group of hydroxyl or carboxylic acid, and block or graft copolymers prepared by the method.
Abstract:
There is provided a method for preparing a low-molecular weight poly(alkylene carbonate) of which the molecular weight and chain shape are precisely controlled, by introducing a phosphorous compound having a hydroxyl group as a chain transfer agent in order to regulate the molecular weight, in alternating copolymerizing an epoxide compound and carbon dioxide by using trivalent metal complex prepared from a Salen type ligand containing a quaternary ammonium salt, and a polymer prepared by the method.Since poly(alkylene carbonate) prepared according to the present invention includes a phosphate or phosphonate group in the polymer chain, it has flame-retarding property.
Abstract:
The present invention related to a method of manufacturing a polycarbonate including the process of copolymerizing epoxide compound and CO2 using cobalt(III) or chromium(III), where the ligands contains at least 3 ammonium cations, central metal has formal −1 charge, and conjugated anions of the two cationic ammonium groups are acid-base homoconjugation, as catalyst.According to the present invention, the initial induction time can be reduced when the said polycarbonate is manufactured and it is possible to improve the activity of the catalyst and the molecular weight of the obtained polymer.
Abstract:
There is provided a method for preparing a low-molecular weight poly(alkylene carbonate) of which the molecular weight and chain shape are precisely controlled, by introducing a phosphorous compound having a hydroxyl group as a chain transfer agent in order to regulate the molecular weight, in alternating copolymerizing an epoxide compound and carbon dioxide by using trivalent metal complex prepared from a Salen type ligand containing a quaternary ammonium salt, and a polymer prepared by the method.Since poly(alkylene carbonate) prepared according to the present invention includes a phosphate or phosphonate group in the polymer chain, it has flame-retarding property.
Abstract:
Provided is preparation of poly(alkylene carbonate) through alternating copolymerization of carbon dioxide and epoxide. According to the disclosure, by introducing a diepoxide compound to alternating copolymerization of carbon dioxide and epoxide compound using a metal(III) prepared with salen-type ligands containing quaternary ammonium salt as a catalyst, some of the polymer chains may be cross-linked to thus increase an average molecular weight of the copolymer and extend a distribution of molecular weight. A resin prepared according to this method may have high mechanical strength and rheological advantages.
Abstract:
This invention relates to a Salen type ligand including three or more quaternary ammonium salts of nitrate anions, to a trivalent metal complex compound prepared from this ligand and a method of preparing the same, to a method of preparing polycarbonate by copolymerizing an epoxide compound and carbon dioxide using the complex compound as a catalyst, and to a method of separating and collecting the catalyst from the copolymer after copolymerization. This catalyst used to copolymerize an epoxide compound and carbon dioxide can be more simply prepared, and has lower catalyst preparation and recovery costs, and higher activity, compared to conventional catalysts.
Abstract:
Disclosed is a continuous process for manufacturing aliphatic polycarbonate by polymerizing carbon dioxide and one or more epoxide compound in the presence of catalyst, in which carbon dioxide, one or more epoxide compound, and the catalyst are continuously supplied to polymerization reactor to produce aliphatic polycarbonate, separate unreacted carbon dioxide and epoxide compound and recycle them as raw materials.
Abstract:
The present invention related to a method of manufacturing a polycarbonate including the process of copolymerizing epoxide compound and CO2 using cobalt(III) or chromium(III), where the ligands contains at least 3 ammonium cations, central metal has formal −1 charge, and conjugated anions of the two cationic ammonium groups are acid-base homoconjugation, as catalyst.According to the present invention, the initial induction time can be reduced when the said polycarbonate is manufactured and it is possible to improve the activity of the catalyst and the molecular weight of the obtained polymer.