Abstract:
A sense signal is continuously received from a capacitive touch-sensing panel. A reference signal is set or adjusted to have a level of the sense signal be in a first relation to that of the reference signal in an initial state, and the sense signal is compared with the reference signal to generate a comparison signal in a sensing state. The comparison signal is outputted with a first logic level when a level of the sense signal is in the first relation to a level of the reference signal, and outputted with a second logic level when a level of the sense signal is in a second relation to a level of the reference signal. Whether a touch action is conducted is determined according to a compared result of occurrences of the first and second logic levels of the comparison signal generated within a preset time period.
Abstract:
A floating touch method and a touch device are provided. The touch device includes a capacitive touch panel and a sensor circuit. The capacitive touch panel includes separate electrode units and connecting traces corresponding to the separate electrode units one-on-one. At first, the sensor circuit controls the capacitive touch panel to sense a control object within different sensing ranges at different time points to determine a distance-related value between the control object and the capacitive touch panel. Then, the sensor circuit controls the capacitive touch panel to detect a floating touch action of the control object based on the distance-related value. Subsequently, the sensor circuit issues a control signal corresponding to the floating touch action to enable the touch device or the capacitive touch panel to perform a specific function.
Abstract:
For sensing a control point on a capacitive-type panel, first and second voltage signals are respectively received through two sets of receiving lines selected from N receiving lines in response to first and second charge/discharge signals transmitted through two sets of transmitting lines selected from M transmitting lines, respectively, during a specified time period. A characteristic value is generated by operating the first and second voltage signals. Repeat the steps to generate characteristic values for neighboring regions defined by different combinations of transmitting lines and receiving lines. Position information of control point(s) on the capacitive-type panel is estimated accordingly.
Abstract:
For sensing a control point on a capacitive-type panel, first and second voltage signals are respectively received through two sets of receiving lines selected from N receiving lines in response to first and second charge/discharge signals transmitted through two sets of transmitting lines selected from M transmitting lines, respectively, during a first time period. Third and fourth voltage signals are received through two sets of receiving lines selected from the N receiving lines in response to third and fourth charge/discharge signals respectively transmitted through the two sets of transmitting lines, respectively, during a second time period. A characteristic value is generated according to the first, second, third and fourth voltage signals. Repeat the steps to generate characteristic values for neighboring regions defined by different combinations of transmitting lines and receiving lines. Position information of control point(s) on the capacitive-type panel is estimated accordingly.
Abstract:
A user input device for use with a controlled device. The user input device includes a substrate; a plurality of sensing electrodes disposed separately on or in the substrate for sensing an object; and a controller electrically coupled to the sensing electrodes and stored therein at least one virtual key allocation table, wherein the controller executes a converting operation to generate a sensed object information according to a capacitance data realized from the sensing electrodes, and generates an input command associated with a specified key in the virtual key allocation table, which corresponds to the sensed object information, for controlling the controlled device. The same sensed object information can be designed to correspond to keys of different definition under different virtual key allocation tables, and/or derive different input commands in different operational.
Abstract:
A capacitive touch keyboard includes a sensor layer, ground plane, a flexible sensed body, and a sensing circuit. The sensor layer includes a substrate and a key sensing cell which disposed on the substrate spaced apart from the ground plane. The flexible sensed body includes a sensed portion and a connected portion connected with the ground plane where the sensed portion obliquely extends to above the key sensing cell such that the flexible sensed body and the key sensing cell jointly form a capacitor structure. The sensing circuit is electrically connected to the sensing cell for probing a capacitance change. Therefore, features of more simplified structure design, tactile feel, and improved durability are provided in a capacitive keyboard.
Abstract:
A touch display in communication with at least one external electronic device through an external signal cable or a wireless transmission channel is provided. The touch display includes a display module, a touch panel formed on the display module and a control module. The control module is in communication with the touch panel, the display module and the external electronic device. The control module generates touch information in response to touch operation on the touch panel, and converts the touch information into a control instruction. The touch information or the control instruction is transmitted to the external electronic device through the external signal cable or the wireless transmission channel to operate the external electronic device.
Abstract:
A biological feature-sensing device for acquiring biological feature information by sensing a biological feature is provided. The biological feature-sensing device includes a capacitive touch panel and a control circuit. The capacitive touch panel includes signal transmitting lines and signal receiving lines. A first pitch of the signal transmitting lines or a second pitch of the signal receiving lines is greater than or equal to a minimum on-center spacing of the biological feature. The control circuit receives first and second voltage signals through two sets of signal receiving lines in response to first and second charge/discharge signals transmitted through two sets of signal transmitting lines, and generates a characteristic value according to the first and second voltage signals. Many characteristic values corresponding to different combinations of the signal transmitting lines and signal receiving lines are generated accordingly to form a characteristic value matrix representing the biological feature information.
Abstract:
A floating touch method and a touch device are provided. The touch device includes a capacitive touch panel and a sensor circuit. The capacitive touch panel includes separate electrode units and connecting traces corresponding to the separate electrode units one-on-one. At first, the sensor circuit controls the capacitive touch panel to sense a control object within different sensing ranges at different time points to determine a distance-related value between the control object and the capacitive touch panel. Then, the sensor circuit controls the capacitive touch panel to detect a floating touch action of the control object based on the distance-related value. Subsequently, the sensor circuit issues a control signal corresponding to the floating touch action to enable the touch device or the capacitive touch panel to perform a specific function.
Abstract:
A touch sensing device and a touch control system are provided. The touch sensing device includes a substrate, three conductive sensor pad units and a processing unit. The three conductive sensor pad units sense a touch operation and generate three corresponding sensing signals in response to the touch operation. The processing unit determines values of at least three variables according to the three sensing signals. The controlled device of the touch control system is controlled according to the values of the variables.