Abstract:
In one of its aspects, the invention relates to a process to optimize the dose of a treatment agent for the treatment of a fluid comprising a contaminant. In this first aspect the process comprises the steps of: (a) calculating the dose of the treatment agent based on the relationship between concentration of the treatment agent at one or more points and residence time distribution of the treatment system, and (b) contacting the fluid with the treatment agent in the concentration required to meet the dose calculated in step (a). In another one of its aspects, the invention relates to a process to optimize the dose of a treatment agent for reduction of a contaminant in a fluid.
Abstract:
There is described a cleaning system for a radiation source. The cleaning system comprises: (i) a cleaning chamber housing; (ii) a cleaning cartridge removably disposed in the cleaning chamber housing; and (iii) an endcap element removably coupled to the cleaning chamber housing. The cleaning cartridge comprises a first sealing element and a second sealing element, the first sealing element and the second sealing element configured to provide a substantially fluid tight seal with respect to an exterior surface of the radiation source. A radiation source module and a fluid treatment system comprising the radiation source module are also described.
Abstract:
A cleaning apparatus with cleaning rings for cleaning cylindrical bodies, preferably for the quartz cladding tubes in UV disinfection units, especially in UV disinfection sluices for waste water, which in addition to an axially parallel longitudinal movement over the outside surfaces perform an additional angularly limited and alternating rotational movement The object of the invention is a cleaning apparatus with cleaning rings for cleaning cylindrical bodies, preferably for the quartz cladding tubes in UV disinfection units, especially in UV disinfection sluices for waste water, which in addition to an axially parallel longitudinal movement over the outside surfaces perform an additional angularly limited and alternating rotational movement. According to the inventive idea the cleaning rings are moved slowly in an axially parallel way over the quartz cladding tubes, with the same moving additionally in an angularly limited and with suitable speed alternatingly about a rotational axis for reinforcing the cleaning performance and especially for the better penetration of troughs at places that are out of round. This manner of movement of the cleaning rings necessitates a considerably lower amount of mechanical complexity at virtually the same cleaning performance than would be necessary in a full and uninterrupted rotation of the cleaning rings. Compared with the usual rigid wiper rings which are moved back and forth in an axially parallel manner on the quartz cladding tubes without any rotational movement, the cleaning performance with the cleaning rings according to the inventive idea is considerably better.
Abstract:
There is described a fluid treatment system comprising an array of independent fluid treatment reactors. The reactors are arranged in a manner whereby a flow of fluid may be passed through the array in a substantially helical direction. The fluid treatment system is capable of treating large volumes of fluid (e.g., water) while requiring a relatively small foot print. In essence, the present fluid treatment system concentrates a relatively large number of radiation sources in a relatively small amount of space resulting in the ability to treat large volumes of fluid (e.g., water).
Abstract:
Methods of operating a system for treating a fluid flowing through a reactor with ultraviolet (UV) light emitted from a light source assembly. One method includes detecting, with a flow sensor, a flow rate of fluid through the reactor; and controlling, with a processor, electric power supplied to the light source assembly so that a low average amount of electric power is supplied when the flow rate is below a threshold. In another method, an intensity of the UV light may be controlled by the processor based on a detected temperature in the light source assembly. Yet another method includes determining that the flow sensor is defective based on the detected temperature in the light source assembly and the detected flow rate. A further method includes determining that an intensity sensor is defective based on a detected intensity and the detected temperature in the light source assembly.
Abstract:
A radiation source assembly comprises a source base, a UV transparent sleeve, and a UV lamp. The source base comprises a sealed electrical connection interface and an opposing sealed sleeve interface. The sealed electrical connection interface comprises a electrical contacts and the sealed sleeve interface comprise a radial sealing element, an outer collar, and a compression ring. The UV transparent sleeve is engaged with the sleeve interface such that the radial sealing element of the sealed sleeve interface is disposed between the UV transparent sleeve and the outer collar of the source base, and the compression ring is positioned over the UV transparent sleeve and engaged with the source base to compress the radial sealing element onto the UV transparent sleeve and the outer collar. The UV lamp is disposed within the UV transparent sleeve and electrically coupled to the electrical contacts of the electrical connection interface.
Abstract:
A radiation source assembly comprises a source base, a UV transparent sleeve, and a UV lamp. The source base comprises a sealed electrical connection interface and an opposing sealed sleeve interface. The sealed electrical connection interface comprises a electrical contacts and the sealed sleeve interface comprise a radial sealing element, an outer collar, and a compression ring. The UV transparent sleeve is engaged with the sleeve interface such that the radial sealing element of the sealed sleeve interface is disposed between the UV transparent sleeve and the outer collar of the source base, and the compression ring is positioned over the UV transparent sleeve and engaged with the source base to compress the radial sealing element onto the UV transparent sleeve and the outer collar. The UV lamp is disposed within the UV transparent sleeve and electrically coupled to the electrical contacts of the electrical connection interface.
Abstract:
An embodiment provides a device for cleaning a sleeve of an ultraviolet light source, including: the ultraviolet light source for the disinfection of a fluid, wherein the sleeve surrounds the ultraviolet light source; a cleaning composition encapsulated in a polymer material to form a compound; a canister around and in contact with the sleeve and encapsulating the compound against the sleeve thereby placing the compound in a location adjacent to the sleeve, wherein the polymer material dissolves at a pH above a target value above the polymer material dissolution point releases the cleaning composition. Other aspects are described and claimed.
Abstract:
A radiation source assembly comprises a source base, a UV transparent sleeve, and a UV lamp. The source base comprises a sealed electrical connection interface and an opposing sealed sleeve interface. The sealed electrical connection interface comprises a electrical contacts and the sealed sleeve interface comprise a radial sealing element, an outer collar, and a compression ring. The UV transparent sleeve is engaged with the sleeve interface such that the radial sealing element of the sealed sleeve interface is disposed between the UV transparent sleeve and the outer collar of the source base, and the compression ring is positioned over the UV transparent sleeve and engaged with the source base to compress the radial sealing element onto the UV transparent sleeve and the outer collar. The UV lamp is disposed within the UV transparent sleeve and electrically coupled to the electrical contacts of the electrical connection interface.
Abstract:
There is described a cleaning system for a radiation source. The cleaning system comprises: (i) a cleaning chamber housing; (ii) a cleaning cartridge removably disposed in the cleaning chamber housing; and (iii) an endcap element removably coupled to the cleaning chamber housing. The cleaning cartridge comprises a first sealing element and a second sealing element, the first sealing element and the second sealing element configured to provide a substantially fluid tight seal with respect to an exterior surface of the radiation source. A radiation source module and a fluid treatment system comprising the radiation source module are also described.