Abstract:
Non-photosensitive direct thermographic materials comprise a reducing agent that is a specific ortho-amino-phenol, para-amino-phenol, or hydroquinone compound. These compounds can reduce silver(I) ion to metallic silver to produce a dense black silver image under the short time and high temperature conditions that occur when using thermal print-heads during direct thermal printing. The materials are characterized by their calculated aqueous deprotonation and their calculated anion HOMO energies.
Abstract:
A photothermographic element containing a transparent substrate having one major surface thereof containing the following layers sequentially coated thereon: an image-receiving layer; an opacifying layer; a first dry silver layer; an interlayer containing thermoplastic polymer; a second dry silver layer; an interlayer containing thermoplastic polymer; and a third dry silver layer, wherein the first, second, and third dry silver layers each contain a light-insensitive, reducible silver source; light-sensitive silver halide, and as a reducing agent for the light-insensitive, reducible silver source, a material oxidizable to a colored dye whose color differs from that capable of being formed in each other dry silver layer, each of the dry silver layers being individually sensitized to light of different wavelengths.
Abstract:
Blends of poly(caprolactone) and poly(vinyl chloride) have been found to have good dye permeability. They have been incorporated into photothermographic constructions as barrier interlayers and dye-receiving layers.
Abstract:
A direct thermographic material has one or more thermographic layers on a polymeric support. Two protective layers are disposed over the one or more thermographic layers and both protective layers comprise the same polymer as the predominant binder. The outermost protective layer contains one or more lubricants while the innermost protective layer is substantially free of lubricants.
Abstract:
Non-photosensitive direct thermographic materials comprise a reducing agent that is a specific ortho-amino-phenol, para-amino-phenol, or hydroquinone compound. These compounds can reduce silver(I) ion to metallic silver to produce a dense black silver image under the short time and high temperature conditions that occur when using thermal print-heads during direct thermal printing. The materials are characterized by their calculated aqueous deprotonation and their calculated anion HOMO energies.
Abstract:
Ribonucleic acid (RNA) compounds have been found to function as antifoggants and post-processing print stabilizers in photothermographic elements.
Abstract:
The use of copolymers of vinylidene chloride and vinyl pyrrolidone as selective diffusion media in dye-diffusive photothermographic imaging constructions is disclosed. Unoxidized phenolic leuco dye molecules diffuse into a film of these copolyers but do not readily diffuse out. In contrast, their oxidized dye forms, which are quinoidal in nature, readily diffuse through these interlayers resulting in improved image stability and color separation.
Abstract:
Certain effective leuco dyes for silver halide/silver salt/reducing agent photothermographic color imaging materials tend to bleach in the final image. The presently disclosed system of a syringaldazine and a stabilizing binder resin is more stable.
Abstract:
Thermographic and photothermographic materials comprise a barrier layer to provide physical protection and to prevent migration of diffusible imaging components and by-products resulting from high temperature development. The barrier layer comprises a film-forming, water-insoluble aromatic polyester that has a molecular weight of at least 10,000 g/mole and is capable of retarding diffusion of mobile chemicals such as fatty acids, developers and toners. This polymer can also be present in admixture with another film-forming polymer to provide a clear and scratch-resistance surface.
Abstract:
Various photothermographic elements are provided containing a transparent substrate; image receiving layers; dry silver layers; interlayers; and a translucent or opacifying layer. The translucent or opacifying layer can occupy a variety of positions in the photothermographic element relative to the dry silver layers. The translucent or opacifying layers serve to help produce a reflection print upon exposure of the photothermographic element to actinic light and subsequent heating of the exposed element for image development and dye transfer.