Abstract:
The invention relates to a fluid dynamic bearing system that comprises at least one stationary part that has a shaft and two bearing plates disposed on the shaft at a mutual spacing, and at least one rotating part that is supported so as to rotate about a rotational axis with respect to the stationary part, and comprises a bearing bush and a sleeve enclosing the bearing bush. A bearing gap filled with bearing fluid is provided between the parts and at least one sealing gap for sealing the bearing gap that extends concentric to the rotational axis. The bearing comprises at least one fluid dynamic radial bearing and two fluid dynamic axial bearings and at least one recirculation channel that connects the two axial bearing regions to each other. According to the invention, the largest radial diameter of the recirculation channel is greater than or equal to the largest diameter of the sealing gap, and the smallest radial diameter of the recirculation channel is greater than or equal to the largest diameter of an adjacent bearing plate. Moreover, additional and effective deairing of the recirculation channel is effected by a venting device. To realize improved equilibrium of pressure in the bearing gap and improved retention of the bearing fluid, the sealing gaps can be inclined, at least in sections, at an angle α, β with respect to the rotational axis, wherein the angles may have different sizes.
Abstract:
The invention relates to a spindle motor having a hydrodynamic bearing system, particularly to drive platters in a hard disk drive, the platters being disposed on a rotor, and the bearing system being formed by a bearing sleeve arranged on a baseplate and a shaft rotatably supported in an opening in the bearing sleeve and at least one thrust plate connected to the shaft. A liquid lubricant is filled into a bearing gap formed between the shaft, the thrust plate and the bearing sleeve. The invention is characterized in that the thrust plate rests directly against the rotor and is accommodated in an annular recess in the bearing sleeve facing the rotor.
Abstract:
The invention relates to a spindle motor having a sealing support film which prevents exchange of air between the interior and surroundings of the spindle motor. In spindle motors for hard disk drives it is extremely important to construct the spindle motor so that it is sealed tight against the external environment, ie so that from the connecting side of the spindle motor no admission of air to the interior of the spindle motor can occur. A further characteristic of the invention consists in that the support film is bonded and fixed in place in sealing manner by means of an adhesive which does not give off gas or does so only very slightly.
Abstract:
The invention relates to a fluid dynamic bearing system having a bearing bush and a shaft that are rotatable with respect to one another about a common rotational axis and form a bearing gap filled with bearing fluid between associated bearing surfaces. The bearing surfaces form at least one fluid dynamic radial bearing. A rotor component is disposed on the shaft. A stopper ring is disposed on the shaft or on the rotor component and adjoins the bearing bush, wherein a gap is formed between the mutually facing surfaces of the bearing bush and the stopper component that is filled with a bearing fluid and connected to the bearing gap and extends substantially in a radial direction. According to the invention, the surfaces of the bearing bush and/or the stopper component are formed such that the gap is tapered, narrowing radially outwards. Moreover, a recirculation channel may be provided in the bearing bush that connects a gap region between the bearing gap and the sealing gap radially outside the axial bearing to a gap region radially outside the stopper component.
Abstract:
The invention relates to a spindle motor having a deep-drawn baseplate and an aperture to receive and secure a bearing system to rotatably support a rotor. To avoid having to machine the bearing receiving portion of the baseplate in a complex process, the invention provides for a separate bush to be disposed in the aperture in the baseplate to receive and secure the bearing system. Compared to the baseplate, this bush can be worked in a simpler and more cost-saving process.
Abstract:
Permanent electro-conductive connection is achieved between a bearing component and a baseplate/flange by providing at least one solid-state contact element between the baseplate/flange and the bearing component. The contact element establishes an electric contact between these parts by exercising mechanical force on the baseplate/flange and/or the bearing component. Alternatively, at least one welding seam may be formed between the baseplate/flange and the bearing component to establish the electro-conductive connection.
Abstract:
A spindle motor for hard disk drives having a base-plate, a stator, a rotor, a shaft, a bearing recess formed in either the rotor or the base-plate; and an upper roller bearing and a lower roller bearing. Each roller bearing includes an inner ring and an outer ring. Inner rings are fixedly mounted on the shaft. At least one outer ring is secured to the bearing recess by welding or bonding at predetermined spots located at a first end face of the outer ring. The outer ring is secured to the bearing recess without applying an adhesive between an outer perimeter of the outer ring and the inner wall of the bearing recess.
Abstract:
The invention relates to a disk drive with spindle motor and electrical connection arrangement, comprising a baseplate, a central shaft, an armature which is mounted rotatably with respect to the baseplate by means of a suitable bearings and on which at least one storage disk is arranged, and a stator-side winding stack provided with coils and attached to the baseplate by means of a winding support, the electrical connection of the coils of the winding stack being effected by means of terminal tags. The terminal tags simultaneously serve as soldering terminals for the ends of the wires coming from the coils and as contact springs for non-positive spring-loaded connection to corresponding contact lands on the printed circuit board.