Abstract:
An actuator assembly comprised of: a first coil and a second coil, each with a bore and a producing a magnetic flux when subject to an electric signal; a tube extending through the bores such that coils are coaxial; a magnetic pole piece within the tube and generally between the first bore and the second bore; a magnetic ring set outside of the tube and between the coils, in which the magnetic flux paths both travel through the magnetic pole piece and the magnetic ring to complete their respective magnetic paths; and a first and second axially translatable movable member within the tube and wherein the movable members each axially translate towards the magnetic pole piece in the presence of the magnetic flux such that by controlling the electric signal, proportionality can be achieved.
Abstract:
A proportional solenoid-driven valve control assembly contains a moveable, magnetic armature positioned adjacent to one end of a fixed pole piece that protrudes from a solenoid bore and is supported by means of a pair of flat suspension springs adjacent to the one end of the bore. The movable armature is configured to provide two generally cylindrical radial magnetic flux paths. One flux path traverses a radial gap at one end of fixed magnetic pole piece that protrudes from the one end of the solenoid bore. The other flux path traverses a generally cylindrical gap between a rim portion of the armature and an inwardly projecting magnetic element of the solenoid housing. The two radially separate cylindrical gaps function as coaxial guide air-bushings for the moveable magnetic armature that prevent off-axis play between the moveable armature and the pole piece and the inwardly projecting magnetic element.
Abstract:
A proportional solenoid-driven valve control assembly contains a moveable, magnetic armature positioned adjacent to one end of a fixed pole piece that protrudes from a solenoid bore and is supported by means of a compact suspension spring arrangement adjacent to the one end of the bore. The movable armature is configured to provide two radial magnetic flux paths. One flux path traverses a fixed radial shunt gap at one end of fixed magnetic pole piece that is located in and protrudes from the one end of the solenoid bore. The other flux path traverses a variable geometry reluctance gap defined between a radially projecting, tapered rim portion of the armature and an inwardly projecting tapered portion of the solenoid assembly housing. The proportional solenoid assembly is mechanically coupled with a valve unit for electrically controlling its operation, in particular the flow of fluid between a fluid input port and a fluid exit port of the valve unit, in accordance with displacement of the movable armature along the solenoid assembly axis in proportion to the current applied to the solenoid.
Abstract:
A proportional actuator, and a unibody magnetic housing for use in a proportional actuator. The proportional actuator includes a coil assembly with a coil and coil cover; the coil assembly is fitted to the unibody magnetic housing to form a magnetic coupling. The unibody magnetic housing includes a wall having a region of varying wall thickness, which may be formed by an annular groove, and a central bore in which a plunger may be slidably mounted so that its end moves along the region of varying wall thickness as it slides within the central bore.
Abstract:
A proportional solenoid-controlled fluid valve assembly having a fluid pressure balancing diaphragm. The valve assembly also includes a solenoid coil assembly having a cylindrical conduit and a magnetic orifice piece positioned within the conduit. A plunger is positioned within the conduit and is movable within the conduit between a de-actuated position and an actuated position. A pressure balancing diaphragm is provided having a top side, a bottom side, an outer annular flange portion, a U-shaped portion, and an inner annular flange terminating at a diaphragm opening, with the diaphragm being positioned within valve base with the outer annular flange portion abutting the ledge of the valve base and the U-shaped portion abutting the valve seat. A retainer is also provided having a top cylindrical upstanding portion extending through the diaphragm opening and an aperture formed in the plunger. A magnetic frame is also included for securing the valve assembly in an assembled configuration, wherein a magnetic path is formed by magnetic orifice piece, plunger and the magnetic frame and the solenoid coil is configured to be actuated such that the plunger moves towards the magnetic orifice piece, thus lifting the diaphragm and retainer and allowing pressurized media to pass from the inlet port to the outlet port.
Abstract:
A proportional solenoid-driven valve control assembly contains a moveable, magnetic armature positioned adjacent to one end of a fixed pole piece that protrudes from a solenoid bore and is supported by means of a pair of flat suspension springs adjacent to the one end of the bore. The movable armature is configured to provide two generally cylindrical radial magnetic flux paths. One flux path traverses a radial gap at one end of fixed magnetic pole piece that protrudes from the one end of the solenoid bore. The other flux path traverses a generally cylindrical gap between a rim portion of the armature and an inwardly projecting magnetic element of the solenoid housing. The two radially separate cylindrical gaps function as coaxial guide air-bushings for the moveable magnetic armature that prevent off-axis play between the moveable armature and the pole piece and the inwardly projecting magnetic element.
Abstract:
A proportional solenoid-driven valve control assembly contains a moveable, magnetic armature positioned adjacent to one end of a fixed pole piece that protrudes from a solenoid bore and is supported by means of a pair of flat suspension springs adjacent to the one end of the bore. The movable armature is configured to provide two generally cylindrical radial magnetic flux paths. One flux path traverses a radial gap at one end of fixed magnetic pole piece that protrudes from the one end of the solenoid bore. The other flux path traverses a generally cylindrical gap between a rim portion of the armature and an inwardly projecting magnetic element of the solenoid housing. The two radially separate cylindrical gaps function as coaxial guide air-bushings for the moveable magnetic armature that prevent off-axis play between the moveable armature and the pole piece and the inwardly projecting magnetic element.
Abstract:
A dual pressure regulator device for a spray gun is supplied with an input fluid under pressure and outputs a first regulated pneumatic pressure to a pressurized tank, and a second regulated pneumatic pressure to the spray gun. The dual pressure regulator device has a unitary body having a fluid passageway extending from an inlet port at a first end of the body, to which inlet port the input fluid is supplied, to a first valve chamber in which a first regulator valve is installed, and to a second valve chamber in which a second regulator valve is installed. The pressure in the nozzle device's main pressure internal line and the head pressure within the tank are maintained within specified tolerances, independent of pressure fluctuations in the main supply line to the nozzle device. The body has an inclined body wall portion that is conformal with the handle, such that the valve assemblies are physically accommodated and accessible in a space directly beneath the handle, adjacent to the tank.
Abstract:
A solenoid-controlled fuel injection device, particularly useful for injecting non-Newtonian types of fuel materials, such as coal slurry, to a preburn chamber of an internal combustion engine, comprises a wet-type solenoid unit and a vortex valve unit integrated together in a modular configuration. The solenoid unit contains a magnetic coil surrounding a coaxial control fluid-sealing bore through which a cylindrical armature is translated. The armature has a coaxial armature stem which is engaged by the valve stem of the vortex valve unit. The vortex valve stem is supported on a compression spring within the longitudinal bore of a valve body, coaxial with the bore of the solenoid unit and engages a poppet valve seat adjacent to a vortex valve element. A control fluid supply inlet is coupled to the longitudinal bore, while a fuel supply bore is coupled to a fuel input port to the vortex chamber of the vortex valve. Until the coil is energized, the valve stem is spring-biased away from the valve seat, so that control fluid in the longitudinal bore is directed into the vortex chamber, to prevent fuel from being supplied from an outlet nozzle. When the coil is energized, the armature translates the valve stem against the spring bias, to contact the poppet seat and cut off control fluid to the vortex valve, whereby fuel is injected via the nozzle at the vortex chamber output port.
Abstract:
A proportional control valve is described having a housing with a bore formed therein. The first valve contains passages therein which communicate between the fluid inlet and the fluid outlet. Also positioned within the bore is a second valve which is aligned with one of the passages formed in the first valve. As the second valve is moved to a closed position, fluid flow through the passage is cut off and as the second valve is opened, fluid flow through the passage is permitted. A sleeve is also positioned within the bore which is constructed of a non-magnetic section sandwiched between two magnetic end sections. The sleeve contacts the first valve and is formed such that the non-magnetic section surrounds a portion of the second valve. The proportional control valve also contains an electromagnet for linearly moving the second valve in response to an input signal. Movement of the second valve creates a fluid flow path across the first valve and establishes a pressure differential which causes the first valve to follow the movement of the second valve. Likewise, movement of the first valve causes the sleeve to move in a like direction thereby providing an essentially constant air gap between the upper surface of the second valve and the end of the sleeve. This constant air gap is beneficial in that it permits the stroke of the first valve to be increased without increasing the power input to the electromagnet.