Abstract:
A thermoplastic elastomer is present in a substantially solid state suitable for use as a binder for a propellant, explosive, and/or gas generant of a supplemental restraint system. The thermoplastic elastomer is formed from a composition including A blocks which are crystalline at temperatures below about 75° C. and B blocks which are amorphous at temperatures above about −20° C. The A blocks are derived from oxetane derivatives and/or tetrahydrofuran derivatives. The B blocks are derived from oxetanes, tetrahydrofuran, oxiranes, and derivatives thereof. The A and B blocks are end-capped with at least one diisocyanate and linked with at least one difunctional oligomer having two functional groups which are reactive with free and unreacted isocyanate moieties of the diisocyanate.
Abstract:
Energetic polymers and methods for their synthesis are provided. The polymers are preferably produced from cyclic ether monomers having 4 or 5 member rings. The cyclic ether monomers preferably include energetic functional groups such that a polymer formed from the monomer is itself energetic. Polymerization is catalyzed by a combination of alkylating salt and alcohol. The preferred salts are triethoxonium salts with anions such as hexafluorophosphate, hexachloroantimonate, and tetrafluoroborate. It is found that by employing the combination of selected triethoxonium salts and selected alcohols that it is possible to produce an energetic polymer with predetermined functionality and molecular weight. The salt is found to scavenge water in the reaction mixture, thus increasing control over the functionality of the final product. The salt-alcohol combination also rapidly initiates polymerization and allows higher molecular weights to be achieved. This is particularly important in that one limitation previously experienced in polymerization of the types of monomers used in this invention was an inability to achieve rapid and complete polymerization.
Abstract:
4,10-dinitro-2,6,8,12-tetraoxa-4,10-diazatetracyclo[5.5.0.0.sup.5,9 0.sup.3,11 ]dodecane is synthesized by reacting a diacyl-2,3,5,6-tetraoxypiperazine or tetraoxadiazaisowurtzitane derivative, a strong acid, and a nitrate source, such that an exothermic reaction occurs which proceeds at a temperature above ambient temperature. The reaction product is precipitated by cooling. It may be purified by washing with methanol and/or sodium bicarbonate and by simmering in nitric acid.
Abstract:
A method is provided in which PGN is end-modified in a process using a single solvent. The resulting end-modified PGN may be stably crosslinked using aliphatic polyisocyanates. Further provided are methods of producing energetic compositions comprising PGN which has been end-modified in a process using a single solvent. Such energetic compositions may be stably crosslinked using aliphatic polyisocyanates.
Abstract:
A process for the hydrogenolysis of 2,4,6,8,10,12-hexabenzyl-2,4,6,8,10,12-hexaazatetracyclo�5.5.0.0.sup.5,9.0.sup.3,11 !dodecane ("HBIW") is disclosed. In the process, a quantity of HBIW, a cosolvent, and a bromine source are placed into a reaction vessel. Acetic anhydride and a palladium hydrogenolysis catalyst are rapidly added to the reaction vessel. The hydrogenolysis catalyst should be substantially free of water. The reaction vessel is purged of an atmosphere capable of reacting with hydrogen, and hydrogen is quickly introduced into the reaction vessel to convert the HBIW to tetraacetyldibenzylhexaazaisowurtzitane ("TADB"). The acetic anhydride is added immediately prior to hydrogen introduction so that the acetic anhydride does not have time to react with the HBIW to form an acetylated derivative prior to commencement of the desired hydrogenation reaction. The process requires very little palladium catalyst, preferably less than 10% wt/wt based on the HBIW substrate. The TADB, precipitated on the palladium hydrogenolysis catalyst, is subjected to a second hydrogenation step using a formic acid solvent in the presence of hydrogen to form tetraacetyldiformylhexaazaisowurtzitane ("TADF").
Abstract:
An apparatus is provided for the rapid engagement and disengagement of a passive roll with a drive roll. The apparatus comprises a locking lever mechanism which positions a self-aligning roll-holding yoke assembly in a manner such as to form a precise nip line between the passive roll and drive roll.
Abstract:
This thermoplastic elastomer is present in a substantially solid state suitable for use as a binder for a propellant, explosive, and/or gas generant of a supplemental restraint system. The thermoplastic elastomer is formed from a composition including A blocks which are crystalline at temperatures below about 75° C. and B blocks which are amorphous at temperatures above about −20° C. The A blocks are derived from oxetane derivatives and/or tetrahydrofuran derivatives. The B blocks are derived from oxetanes, tetrahydrofuran, oxiranes, and derivatives thereof. The A and B blocks are end-capped with at least one diisocyanate and linked with at least one difunctional oligomer having two functional groups which are reactive with free and unreacted isocyanate moieties of the diisocyanate.
Abstract:
A top jaw assembly for mounting upon the master jaw of a chuck for a lathe includes a mounting base and a top jaw. The mounting base contains two bores which facilitate securement to the master jaw, and a threaded hole. The top jaw is secured to the mounting base by way of a bolt that engages the threaded hole in the mounting base. Movement of the top jaw is prevented by slidably interengaged axial and transverse structure.
Abstract:
Gas generating compositions or propellants are provided which comprise a non-azide fuel which is a transition metal complex of an aminoarazole. Preferred transition metal complexes are zinc and copper complexes of 5-aminotetrazole and 3-amino-1,2,4-triazole, with the zinc complexes most preferred. The propellant compositions also include a conventional oxidizer, such as potassium nitrate or strontium nitrate. These compositions are useful for generating a nitrogen-containing gas for a variety of applications, especially for inflating air bags in automotive restraint systems, as well as other inflatable devices.