Abstract:
The invention relates to the field of civil aviation and, more specifically, relates to the flight management systems, more commonly known by the English acronym FMS. The method for assisting in the management of the flight of an aircraft in order to keep to a time constraint according to the present invention allows for a control of the keeping to the time constraint that presents a rapid dynamic, by avoiding as far as possible having the estimated time of arrival (ETA) at a particular point (P) able to drift relative to a required time of arrival (RTA) at said particular point (P), thanks to the use of a manoeuvring margin (M) granted to the guidance module of the aircraft.
Abstract:
Method for assisting in the flight management of an aircraft aiming to reach a constraint point on a predetermined lateral trajectory that is assumed to have to be followed by the aircraft, at a required time of arrival RTA, said aircraft occupying a current position defined by a current altitude with a current horizontal speed. The method including, when it follows a rallying flight plan, calculating a new rallying flight plan following the lateral trajectory to be followed and including a new estimated speed profile different from the estimated speed profile over at least one update area, the new estimated speed profile including, over said update areas, either a value greater than that of the estimated speed profile, if the arrival time difference is positive, or a value less than that of the estimated speed profile, if the arrival time difference is negative.
Abstract:
The invention relates to a method for determining the speed of an aircraft that is subject to a time constraint. The invention consists no longer in calculating a single CAS/MACH pair during climb/descent but in adapting the speed in a continuous manner to the bounds of curves of minimum Vmin and maximum Vmax speed defining a flight envelope of the aircraft. The calculation of these speeds is carried out on the basis of constant maximum and minimum speed setpoints and of a coefficient taking into account a deviation to the time constraint.
Abstract:
A method of flight management of an aircraft aimed at reaching a constrained point on a predetermined lateral trajectory assumed to be followed by the aircraft, at a required time of arrival RTA to within an absolute tolerance. The method including calculating a flight plan to be followed and a homing flight plan and when the estimated time of arrival ETA based on the homing flight plan strays from an absolute tolerance with respect to the calculation required time of arrival RTAc, calculating a new calculation required time of arrival NRTAc dependent on the calculation required time of arrival RTAc and a function f of the difference between the calculation required time of arrival RTAc and the estimated time of arrival ETA, and replacing the calculation required time of arrival RTAc with the new calculation required time of arrival NRTAc, before recalculating a flight plan to be followed.
Abstract:
The invention relates to a method and a device for calculating a time window for a time constraint of arrival of an aircraft at a given point, the aircraft receiving wind predictions and including a sensor for measuring the wind. The method includes a calculation of a first time window, and the calculation of an overall confidence index having the determination of a first confidence index on the basis of a deviation between wind predictions and wind measurements performed by the aircraft, the calculation of a margin for the time constraint on the basis of the overall confidence index, and the calculation of a second window on the basis of the first time window and of the calculated margin.
Abstract:
Method for generating a flight speed profile of an aircraft (100) according to an RTA constraint, characterized in that it permanently calculates, at any point of the flight plan, a speed setpoint VΩ(X) of the aircraft determined on the basis of reference speed profiles, comprising at least a minimum speed profile Vmin(X), and a maximum speed profile Vmax(X). The method can also take into account an optimum speed profile Vopt(X) determined, for example, on the basis of a cost or performance index.
Abstract:
A method and device checks the conformity of a trajectory calculated by a flight management system of an aircraft in relation to reference data comprising a reference map. The method includes: geo-referencing of a reference map; determination of a reference trajectory from the geo-referenced reference map; detection of nonconformity in the trajectory calculated by the flight management system by comparison of the trajectory calculated by the flight management system with the reference trajectory; and emission of a warning if a nonconformity is detected.
Abstract:
A method of flight management of an aircraft aimed at reaching a constrained point on a predetermined lateral trajectory assumed to be followed by the aircraft, at a required time of arrival RTA to within an absolute tolerance. The method including calculating a flight plan to be followed and a homing flight plan and when the estimated time of arrival ETA based on the homing flight plan strays from an absolute tolerance with respect to the calculation required time of arrival RTAc, calculating a new calculation required time of arrival NRTAc dependent on the calculation required time of arrival RTAc and a function f of the difference between the calculation required time of arrival RTAc and the estimated time of arrival ETA, and replacing the calculation required time of arrival RTAc with the new calculation required time of arrival NRTAc, before recalculating a flight plan to be followed.
Abstract:
Method for assisting in the flight management of an aircraft aiming to reach a constraint point on a predetermined lateral trajectory that is assumed to have to be followed by the aircraft, at a required time of arrival RTA, said aircraft occupying a current position defined by a current altitude with a current horizontal speed. The method including, when it follows a rallying flight plan, calculating a new rallying flight plan following the lateral trajectory to be followed and including a new estimated speed profile different from the estimated speed profile over at least one update area, the new estimated speed profile including, over said update areas, either a value greater than that of the estimated speed profile, if the arrival time difference is positive, or a value less than that of the estimated speed profile, if the arrival time difference is negative.
Abstract:
A method of adjusting the trajectory of an aircraft flying a climb circuit, of substantially helical form corresponding to a succession of racetracks, denoted HOLD, the last HOLD, called the exit HOLD, having predefined geometric characteristics and comprising a lock-on point, allowing the aircraft to enter and to exit in the HOLD, the aircraft attaining the setpoint altitude of the climb circuit during the flight of the exit HOLD, comprises at least three steps, including: a step of computing the prediction of the position of the aircraft when the setpoint altitude will be attained; a step of computing the remaining distance to be traveled, between the position of the aircraft when the setpoint altitude will be attained and the lock-on point; and a step making it possible to carry out an adaptation of the form of the exit HOLD so as to minimize the remaining distance to be traveled DELTA.