Abstract:
In an electronic device, an image point A on an image of an object is selected. A spectral confocal sensor is controlled to move to a position above a measuring point A′ on the object, where the measuring point A′ corresponds to the image point A, and a Z-coordinate of the measuring point A′ is computed using the spectral confocal sensor. A focal position of the measuring point A′ is computed according to the Z-coordinate of the measuring point A′, and a CCD lens is controlled to move to the focal position. The Z-coordinate of the measuring point A′ is stored into a storage unit of the electronic device.
Abstract:
An electronic device includes an image processing system to binarize a gray-scale image to generate a corresponding binary image in the electronic device. Binarization of the gray-scale image by the image processing system includes generation of a binarization array to store binarization threshold values that each corresponds to a pixel of the gray-scale image, and binarization of the gray-scale image according to all binarization threshold values stored in the binarization array.
Abstract:
A focus apparatus comprises a light apparatus emits the light onto an object, an optical apparatus, an image capture apparatus for receiving an image of the object through the optical apparatus, and converting the image into electronic signals, and a adapter. The adapter connects the light apparatus and the optical apparatus. The light apparatus transfers thermal energy generated by the light apparatus to the air of the surrounding environment, and scatters the light to make the light propagate uniformly.
Abstract:
A method controls probe measurement using an electronic device. The method receives user-defined identification data of a probe if a preset configuration file is not stored in a storage device of the electronic device, and fits a three dimensional (3D) model of the probe according to the user-defined identification data of the probe. The method further updates the user-defined identification data of the probe if the fitted 3D model does not match the probe, or stores the user-defined identification data of the probe in a user-defined configuration file if the fitted 3D model matches the probe, and controls the probe to execute measurement according to the user-defined configuration file.
Abstract:
A system and method for positioning a portion of an object to be measured includes installing a digital camera adjacent to a charge coupled device (CCD) lens of an image measuring machine, setting positioning parameters corresponding to different positions of the digital camera on a Z-axis of a world coordinate system, receiving an image of the object captured by the digital camera, and selecting corresponding positioning parameters according to a position of the digital camera. The method further includes selecting a point of the portion of the object in the image, calculating coordinates of the selected point in a plane of the CCD lens, and controlling the CCD lens to move to the calculated coordinates so as to position the CCD lens on the portion of the object.
Abstract:
A method for correcting an image of a physical object first captures images of a circle and a rectangle set of a calibration plate placed on a measurement machine, and determines correction data using the images of the circle and the rectangle. The method further corrects the image of the physical object captured by the measurement machine according to the correction data, and displays a corrected image of the physical object.
Abstract:
A light source is configured to be mounted to a vision measuring instrument that includes a primary image capture unit capturing an image of an object to be measured, and an auxiliary image capture unit providing a means to aim the primary image capture unit at a determined position. The light source includes a main body defining a through hole for receiving the primary image capture unit, and a mounting hole for readily mounting an auxiliary image capture unit. A luminescent surface is formed on an inner wall bounding the through hole of the main body. A number of light-emitting diodes (LEDs) is disposed on the luminescent surface.
Abstract:
A positioning system and method for focusing a charge coupled device (CCD) lens on a selected surface of an object to be measured is provided. The positioning system and method moves the CCD lens downwards to approximate an estimate Z-axis coordinate of the CCD lens, and moves the CCD lens upwards to find an accurate Z-axis coordinate of the CCD lens according to the selected surface of the object. The system and method further moves the CCD lens to a position corresponding to the accurate Z-axis coordinate to focus the CCD lens on the selected surface.
Abstract:
A calibration plate is configured for revising an image capture apparatus of a vision measuring system. The vision measuring system includes a worktable which is configured for supporting the calibration plate. The calibration plate includes a quadrate portion. A calibration area and a zero marker are formed on the quadrate portion. The calibration area includes a plurality of regions having the same shape.
Abstract:
A scanner obtains point-cloud data of adjoining parts of a product. A computing device reads two point-clouds from the point-cloud data, fits two or more lines according to the two point-clouds, selects two lines that have the same ascending direction from the two or more lines, and creates a two-dimensional coordinates system base on the two selected lines. The computing device determines a highest point in each of the two point-clouds based on distances from each point in either of the point-clouds to a corresponding selected line, and determines two nearest points in the two point-clouds. A difference between Y coordinates of the two highest points is determined as a gap-height of two adjoining parts of the product, and a difference between X coordinates of the two nearest points is determined as a gap-width between two adjoining parts.