Abstract:
A method of protecting a transistor formed on a die of an integrated circuit is disclosed. The method comprises forming an active region of the transistor on the die; forming a gate of the transistor over the active region; coupling a primary contact to the gate of the transistor; coupling a programmable element between the gate of the transistor and a protection element; and decoupling the protection element from the gate of the transistor by way of the programmable element. Circuits for protecting a transistor formed on a die of an integrated circuit are also disclosed.
Abstract:
For IC devices that have repeating structures, a method of generating a database for making a mask layer starts with a hierarchical database describing at least one repeating element in the layer, a skeleton that surrounds the repeating elements, and instructions as to where to locate the repeating elements within the skeleton. This database is modified to generate a database that has optical proximity correction (OPC) for diffraction of light that will pass through the mask and expose photoresist on the IC layer. The optical-proximity corrected mask database is fractured by a mask house using instructions on how the modified data base will be divided to form repeating elements that are still identical after OPC, a mask skeleton that includes non-repeating elements, and instructions for placement of the repeating elements in the skeleton. Thus the resulting mask database is smaller than a mask database that includes all copies of repeating elements.
Abstract:
An ESD protection circuit includes a bipolar transistor, a resistor, and a zener diode formed on and within a semiconductor substrate. The resistor extends between the base and emitter regions of the transistor so that voltage developed across the resistor can turn on the transistor. The zener diode is formed in series with the resistor and extends between the base and collector regions of the transistor. Thus configured, breakdown current through the zener diode, typically in response to an ESD event, turns on the transistor to provide a nondestructive discharge path for the ESD. The zener diode includes anode and cathode diffusions. The cathode diffusion extends down into the semiconductor substrate in a direction perpendicular to the substrate. The anode diffusion extends down through the cathode diffusion into the semiconductor substrate. The anode diffusion extends down further than the cathode diffusion so that the zener diode is arranged vertically with respect to the substrate. The cathode diffusion can be formed using two separate diffusions, one of which extends deeper into the substrate than other.