Abstract:
A Robust Model-Free Adaptive controller is disclosed for effectively controlling simple to complex systems including industrial processes, equipment, facilities, devices, engines, robots, vehicles, and appliances. Without the need of re-designing a controller or re-tuning the controller parameters, the inventive controller is able to provide a wide robust range and keep the system under automatic control during normal and extreme operating conditions when there are significant disturbances or changes in system dynamics. Because of its simplicity and capability, the control system is useful for building flexible and adaptive production systems to fulfill the on demand manufacturing needs of the new e-commerce environment.
Abstract:
An enhanced model-free adaptive controller is disclosed, which consists of a linear dynamic neural network that can be easily configured and put in automatic mode to control simple to complex processes. Two multivariable model-free adaptive controller designs are disclosed. An enhanced anti-delay model-free adaptive controller is introduced to control processes with large time delays. A feedforward/feedback model-free adaptive control system with two designs is introduced to compensate for measurable disturbances.
Abstract:
A flexible multifunction model-free adaptive controller capable of controlling a very broad range of processes uses storage and selective use of multiple controller parameter sets, measurement filtering, transient prediction and use of extra controllers to dynamically set constraints for the output of the process controller in order to deal with transients resulting from sudden input changes, yet allow the process to run close to its physical limitations under dynamically varying operating conditions and periodic large processing parameter changes.
Abstract:
FIG. 1 is a right side, top perspective view of a shoe, showing my new design; FIG. 2 is a left side, bottom perspective view thereof; FIG. 3 is a right side view thereof; FIG. 4 is a left side view thereof; FIG. 5 is a front view thereof; FIG. 6 is a rear view thereof; FIG. 7 is a top view thereof; and, FIG. 8 is a bottom view thereof. The dashed broken lines in the figures are for the purposes of illustrating portions of the shoe that form no part of the claimed design.
Abstract:
The present invention relates to a rack steel plate with a thickness up to 177.8 mm by a continuous casting slab, the constituents and mass percentages including C0.11˜0.15%, Si0.15˜0.35%, Mn0.95˜1.25%, P≤0.010%, S≤0.002%, Cr0.45˜0.75%, Mo0.4˜0.6%, Ni1.3˜2.6%, Cu0.2˜0.4%, Al0.06˜0.09%, V0.03˜0.06%, Nb≤0.04%, N≤0.006%, B0.001˜0.002%, the balance is Fe and unavoidable impurity elements. The manufacture method includes, in sequence, KR molten steel pretreatment, converter smelting, LF refining, RH refining, continuous casting through a straight-arc continuous casting machine, shielding the continuous casting slab a cover and slowly cooling, cleaning the continuous casting slab, heating, high-pressure water descaling, control rolling, straightening, slowly cooling, quenching and tempering treatment. The rack steel plate of large thickness in present invention has advantages of high strength, good plasticity and excellent toughness at a low temperature, the process method has advantages of simple process, low cost and efficiently quick etc.
Abstract:
A method includes a step of obtaining in a processing circuit a sequence of elements between a first device and a supply air temperature sensor of an air handling unit. The processing circuit also obtains an estimate for time constants associated with each element of the sequence. The processing circuit adds the time constants to obtain a process time constant estimate. The method further includes controlling a device based at least in part on the process time constant estimate.
Abstract:
Compounds of Formulae I, or pharmaceutically acceptable salts thereof: wherein A1, A2, G1, G2 G3, R1, R2, X, Y, Z, m, n and p are as defined in the specification as well as salts and pharmaceutical compositions including the compounds are prepared. They are useful in therapy, in particular in the management of pain.
Abstract:
Compounds of Formula I, or pharmaceutically acceptable salts thereof: wherein R1, R2, R3, R4, m, n, q, s, t, X, and Y are as defined in the specification as well as salts and pharmaceutical compositions including the compounds are prepared. They are useful in therapy, in particular in the management of pain.
Abstract:
Compounds of Formula I, or pharmaceutically acceptable salts thereof: wherein R2, R3, X, m and n are as defined in the specification as well as salts and pharmaceutical compositions including the compounds are prepared. They are useful in therapy, in particular in the management of pain.
Abstract:
A dispersible nanocomposite comprising nanotubes associated with nanoplatelets. A method for creating an exfoliated nanotubes solution, aligning nanotubes and depositing them on a substrate or in matrix. In one embodiment, the method includes a nanocomposite of at least one nanotube electrostatically associated with at least one nanoplatelet. The nanoplatelets may be removed from the suspension by altering the ionic strength to create an exfoliated nanotube solution. The exfoliated nanotube solution for injection into microchannel templates and aligned deposition.