Abstract:
A semiconductor device for light emission having a plurality of epitaxial layers with an n-type layer for light emission and a p-type layer for light reflection. The p-type layer has at least one seed layer for an outer layer of a conductive metal. The at least at least one seed layer is a material for providing a buffer for differential thermal expansion of the outer layer and the light reflecting layer.
Abstract:
A method to improve the external light efficiency of light emitting diodes, the method comprising etching an external surface of an n-type layer of the light emitting diode to form surface texturing, the surface texturing reducing internal light reflection to increase light output. A corresponding light emitting diode is also disclosed.
Abstract:
Fabrication of Reflective Layer on Semiconductor Light emitting diodes A method for fabrication of a reflective layer on a semiconductor light emitting diode, the semiconductor light emitting diode having a wafer with multiple epitaxial layers on a substrate; the method comprising applying a first ohmic contact layer on a front surface of the multiple epitaxial layers, the first ohmic contact layer being of a reflective material to also act as a reflective layer.
Abstract:
A method of fabricating semiconductor devices is disclosed. The method comprises providing a substrate with a plurality of epitaxial layers mounted on the substrate and separating the substrate from the plurality of epitaxial layers while the plurality of epitaxial layers is intact. This preserves the electrical, optical, and mechanical properties of the plurality of epitaxial layers.
Abstract:
A method for fabrication of a semiconductor device on a substrate, the semiconductor having a wafer. The method includes the steps:(a) applying a seed layer of a thermally conductive metal to the wafer; (b) electroplating a relatively thick layer of the conductive metal on the seed layer, and(c) removing the substrate. A corresponding semiconductor device is also disclosed.