Abstract:
A distortion compensating technique applied to a transmitter for transmitting a quadrature modulated signal in a wireless digital communication system is provided. A phase adjustment value is determined for a quadrature demodulated feedback signal based on comparison between the feedback signal and a reference signal to be transmitted from the transmitter. This phase adjustment value is compared with the previous phase adjustment value. If the comparison result between the current and previous phase adjustment values satisfies a prescribed condition, correction for quadrature modulation, such as DC offset correction, orthogonality correction, or IQ amplitude correction, is performed.
Abstract:
A distortion compensation apparatus shortens the time until start of the transmission. The distortion compensating apparatus for amplifying the transmitted signal after implementation of the distortion compensation process thereto comprises a coefficient memory operable to store coefficients used for the distortion compensation process, an initial value memory operable to store the initial values of the coefficients, and a controller which controls the coefficient memory to store, with limitation, only the coefficients corresponding to the first portion among those stored in the initial value memory for the initial write to the coefficient memory and to store thereafter the coefficients corresponding to the second portion.
Abstract:
A distortion compensation apparatus is provided to restrain an increased calculation time caused by a large amount of calculation required for obtaining a phase variation amount for compensation from the correlation. The distortion compensation apparatus includes an update calculation section calculating a distortion compensation coefficient by use of an adaptive algorithm; a distortion compensation section performing distortion compensation to the transmission signal, based on the distortion compensation coefficient being read out from the distortion compensation coefficient storage; a correlation calculation section calculating a real part of correlation and an imaginary part of correlation of each the reference signal and the feedback signal; and a phase rotation section compensating a relative phase deviation between the reference signal and the feedback signal, based on the real part of correlation and the imaginary part of correlation calculated by the correlation calculation section, wherein the update calculation section calculates a distortion compensation coefficient using the post-compensation signal.
Abstract:
To shorten the time required for writing of the distortion compensation coefficient and to reduce amount of data of the distortion compensation coefficient stored as the initial value of the distortion compensation apparatus. The distortion compensation apparatus for amplifying the transmitting signal after implementing the distortion compensation process comprises a coefficient memory for storing corresponding to each address the coefficient used for the distortion compensation process, an initial value memory for storing the initial value of the coefficient, and a controller for write control corresponding to n (n: natural number equal to 2 or larger) addresses of the coefficient read from the initial value memory corresponding to one address.
Abstract:
A reference signal and a feedback signal are written to memory and the state of a power value of a reference signal is used for judging whether the current signal is in a normal state, burst state, non-modulation state or no-wave transmission state. If the state is judged to be the burst state or no-wave transmission state, a DC offset correction is performed by selecting a feedback signal type DC offset correction method in which a DC offset is corrected by using only a feedback signal. If the state is judged to be the normal state or non-modulation state, a DC offset correction is performed by selecting a reference signal type DC offset correction method in which a DC offset is corrected by using a differential signal between the reference signal and feedback signal.
Abstract:
An address frequency operation unit counts frequencies of occurrences of addresses output by an address conversion unit 14, and a CPU 16 rewrites an address conversion table in the address conversion unit 14 based on a comparison between the counted result and a threshold value. When the frequency of the address is lower than the threshold value, the frequency of occurrence of an output address is increased by increasing the number of input addresses corresponding to one output address. Also, distortion in an output signal which is fed back is detected and the address conversion table is rewritten so that the distortion is decreased.
Abstract:
A step size parameter μ is adaptively varied when a distortion compensation coefficient is calculated in a distortion compensation apparatus, relation between transmission signal level and step size parameter μ is considered. The distortion compensation apparatus includes a memory storing distortion compensation coefficient in a designated write address, and outputting distortion compensation coefficient being stored in a designated readout address; a predistortion section performing distortion compensation processing onto a transmission signal, using the distortion compensation coefficient being output from memory; and a distortion compensation section calculating an update value of distortion compensation coefficient, based on error component existent between transmission signal before distortion compensation processing and transmission signal after being amplified by an amplifier. Further, the distortion compensation section modifies magnitude of step size parameter determining degree of effect of error component produced on the update value, when calculating the update value of the distortion compensation coefficient.
Abstract:
A distortion compensation apparatus is provided to restrain an increased calculation time caused by a large amount of calculation required for obtaining a phase variation amount for compensation from the correlation. The distortion compensation apparatus includes an update calculation section calculating a distortion compensation coefficient by use of an adaptive algorithm; a distortion compensation section performing distortion compensation to the transmission signal, based on the distortion compensation coefficient being read out from the distortion compensation coefficient storage; a correlation calculation section calculating a real part of correlation and an imaginary part of correlation of each the reference signal and the feedback signal; and a phase rotation section compensating a relative phase deviation between the reference signal and the feedback signal, based on the real part of correlation and the imaginary part of correlation calculated by the correlation calculation section, wherein the update calculation section calculates a distortion compensation coefficient using the post-compensation signal.
Abstract:
A power correction value generating unit determines a power correction value for minimizing an error, from a reference output power value of a carrier multiplexed signal, generating due to peak power suppression under a carrier setting based on the carrier setting relating to either one or both of the number of carrier signals and frequency arrangement, and peak suppression setting. An output power error correcting unit corrects a signal gain before or after the carrier signals are multiplexed, using the power correction value obtained by the power correction value generating unit. In an apparatus performing peak suppression according to an input limitation power of the power amplifier, it is possible to always obtain a desirable transmission (output) power even when the number of carriers or carrier frequency arrangement varies.
Abstract:
A distortion compensating amplifier device is disclosed that maintains uniform delay amounts between a transmission input signal and a transmission output signal, even if there is a change in the device characteristics. The distortion compensating amplifier device of a digital predistortion type includes a second delay circuit that delays the transmission input signal; a distortion compensating circuit that performs predistortion compensation on the delayed signal, using a distortion compensating parameter; an amplifier that amplifies the signal subjected to the predistortion compensation; a first delay circuit that further delays the signal delayed by the second delay circuit; and a calculator that calculates the distortion compensating parameter to be used in the predistortion compensation, based on the difference between the signal output from the first delay circuit and the amplified signal.